A383330 Triangle read by rows: T(n,k) is the length of a shortest vectorial addition chain for (n,k), 0 <= k <= n.
0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 2, 3, 3, 4, 3, 3, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5, 4, 4, 5, 5, 5, 5, 5, 5, 5, 3, 4, 4, 5, 4, 5, 5, 6, 4, 4, 5, 5, 5, 5, 5, 5, 6, 5, 5, 4, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 5, 5, 5, 5, 6, 5, 6, 5, 6, 6, 7, 5
Offset: 0
Examples
Triangle begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 ---+-------------------------------- 0 | 0 1 | 0 1 2 | 1 2 2 3 | 2 3 3 3 4 | 2 3 3 4 3 5 | 3 4 4 4 4 4 6 | 3 4 4 4 4 5 4 7 | 4 5 5 5 5 5 5 5 8 | 3 4 4 5 4 5 5 6 4 9 | 4 5 5 5 5 5 5 6 5 5 10 | 4 5 5 5 5 5 5 6 5 6 5 A shortest addition chain for (11,7) is [(1,0), (0,1),] (1,1), (2,1), (4,2), (5,3), (10,6), (11,7) of length T(11,7) = 6.
Links
- Richard Bellman, Problem 5125, Advanced problems and solutions, The American Mathematical Monthly 70 (1963), p. 765.
- Jorge Olivos, On vectorial addition chains, Journal of Algorithms 2 (1981), 13-21.
- E. G. Straus, Partial solution to problem 5125: Addition chains of vectors, Problems and solutions, The American Mathematical Monthly 71 (1964), 806-808.
- Edward G. Thurber and Neill M. Clift, Addition chains, vector chains, and efficient computation, Discrete Mathematics 344 (2021), 112200.
- Wikipedia, Vectorial addition chain.
Comments