A383331 Number of pairs of nonnegative integers, not both equal to 0, with a shortest vectorial addition chain of length n.
2, 3, 7, 16, 37, 91, 229, 585, 1528, 4034, 10862
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Array begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 ---+-------------------------------------- 0 | 0 0 1 2 2 3 3 4 3 4 4 5 4 1 | 0 1 2 3 3 4 4 5 4 5 5 5 5 2 | 1 2 2 3 3 4 4 4 4 5 5 5 5 3 | 2 3 3 3 4 4 4 5 5 5 5 5 5 4 | 2 3 3 3 3 4 3 4 4 4 4 5 4 5 | 3 4 4 4 4 4 4 4 5 5 5 5 5 6 | 3 4 4 4 4 4 4 5 4 4 5 5 5 7 | 4 5 5 5 5 5 5 5 5 5 5 6 6 8 | 3 4 4 4 4 4 4 4 4 5 4 5 4 9 | 3 4 5 4 4 5 5 5 4 5 5 5 4 10 | 4 5 5 5 5 5 5 5 5 5 5 6 5 11 | 4 5 6 5 5 5 6 6 6 5 5 6 6 12 | 4 5 5 5 5 5 5 5 5 5 5 5 5 For (n,k) = (4,6), the unique shortest chain for 4*x+6 is (1, x,) x+1, 2*x+2, 4*x+6 of length T(4,6) = 3. The last term of the chain is the composition of 2*x+2 with itself. For (n,k) = (6,4), a shortest chain for 6*x+4 is (1, x,) x+1, 2*x+2, 3*x+2, 6*x+4 of length T(6,4) = 4. This chain uses only additions.
n | a(n) | pairs (x,y) with x <= y, x+y = a(n), and shortest chain length n ---+------+----------------------------------------------------------------- 0 | 1 | (0,1) 1 | 2 | (0,2), (1,1) 2 | 3 | (0,3), (1,2) 3 | 4 | (1,3) 4 | 6 | (1,5) 5 | 8 | (1,7) 6 | 12 | (1,11) 7 | 20 | (1,19), (3,17) 8 | 29 | (6,23) 9 | 44 | (7,37) 10 | 70 | (11,59) 11 | 104 | (15,89)
Comments