A383331 Number of pairs of nonnegative integers, not both equal to 0, with a shortest vectorial addition chain of length n.
2, 3, 7, 16, 37, 91, 229, 585, 1528, 4034, 10862
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Triangle begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 ---+-------------------------------- 0 | 0 1 | 0 1 2 | 1 2 2 3 | 2 3 3 3 4 | 2 3 3 4 3 5 | 3 4 4 4 4 4 6 | 3 4 4 4 4 5 4 7 | 4 5 5 5 5 5 5 5 8 | 3 4 4 5 4 5 5 6 4 9 | 4 5 5 5 5 5 5 6 5 5 10 | 4 5 5 5 5 5 5 6 5 6 5 A shortest addition chain for (11,7) is [(1,0), (0,1),] (1,1), (2,1), (4,2), (5,3), (10,6), (11,7) of length T(11,7) = 6.
n | functions b*x+c with b+c = a(n) and shortest chain of length n --+--------------------------------------------------------------- 0 | 1, x 1 | 2, x+1, 2*x 2 | 3, x+2, 2*x+1, 3*x 3 | 3+x, x+3 4 | 5+x, x+5 5 | 7+x, x+7 6 | 11*x+2 7 | 23*x+1 8 | 7*x+39, 43*x+3 9 | 11*x+87
Array begins: n\k| 0 1 2 3 4 5 6 7 8 ---+-------------------------- 1 | 1 2 3 5 7 11 19 29 47 2 | 1 2 3 4 6 8 12 20 29 3 | 1 2 3 4 5 7 9 13 20 4 | 1 2 3 4 5 6 8 10 14 5 | 1 2 3 4 5 6 7 9 11 The smallest positive weight of a triple of nonnegative integers with a shortest addition chain of length 8 is T(3,8) = 20. Up to permutations, (3,4,13) is the only such triple, with a shortest addition chain [(1,0,0), (0,1,0), (0,0,1),] (0,0,2), (0,0,4), (0,1,4), (1,1,4), (2,2,8), (3,3,12), (3,3,13), (3,4,13).
Comments