cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383343 a(n) = 3^n - 3*binomial(n,3) - 3*binomial(n,2) - 2*n - 1.

Original entry on oeis.org

0, 0, 1, 8, 42, 172, 611, 2004, 6292, 19304, 58533, 176464, 530558, 1593204, 4781575, 14347196, 43044648, 129137680, 387417545, 1162258008, 3486780370, 10460348540, 31381054251, 94143172708, 282429529532, 847288601592, 2541865819501, 7625597475104, 22876792443942, 68630377352644, 205891132081103
Offset: 0

Views

Author

Enrique Navarrete, Apr 23 2025

Keywords

Comments

a(n) is the number of ternary strings of length n that contain at least two 1s or at least three 2s (or both).

Examples

			a(3) = 8 since the strings are 110 (3 of this type), 112 (3 of this type), 111, and 222.
		

Crossrefs

Cf. A127873.

Programs

  • Mathematica
    a[n_] := 3^n - 3*Binomial[n, 3] - 3*Binomial[n, 2] - 2*n - 1; Array[a, 31, 0] (* Amiram Eldar, Apr 24 2025 *)

Formula

a(n) = 7*a(n-1) - 18*a(n-2) + 22*a(n-3) - 13*a(n-4) + 3*a(n-5), n>4.
From Stefano Spezia, Apr 24 2025: (Start)
G.f.: x^2*(1 + x + 4*x^2)/((1 - x)^4*(1 - 3*x)).
E.g.f.: exp(3*x) - exp(x)*(2 + 4*x + 3*x^2 + x^3)/2. (End)
a(n) = 3^n - A127873(n-1).