A383343 a(n) = 3^n - 3*binomial(n,3) - 3*binomial(n,2) - 2*n - 1.
0, 0, 1, 8, 42, 172, 611, 2004, 6292, 19304, 58533, 176464, 530558, 1593204, 4781575, 14347196, 43044648, 129137680, 387417545, 1162258008, 3486780370, 10460348540, 31381054251, 94143172708, 282429529532, 847288601592, 2541865819501, 7625597475104, 22876792443942, 68630377352644, 205891132081103
Offset: 0
Examples
a(3) = 8 since the strings are 110 (3 of this type), 112 (3 of this type), 111, and 222.
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-18,22,-13,3).
Crossrefs
Cf. A127873.
Programs
-
Mathematica
a[n_] := 3^n - 3*Binomial[n, 3] - 3*Binomial[n, 2] - 2*n - 1; Array[a, 31, 0] (* Amiram Eldar, Apr 24 2025 *)
Formula
a(n) = 7*a(n-1) - 18*a(n-2) + 22*a(n-3) - 13*a(n-4) + 3*a(n-5), n>4.
From Stefano Spezia, Apr 24 2025: (Start)
G.f.: x^2*(1 + x + 4*x^2)/((1 - x)^4*(1 - 3*x)).
E.g.f.: exp(3*x) - exp(x)*(2 + 4*x + 3*x^2 + x^3)/2. (End)
a(n) = 3^n - A127873(n-1).
Comments