A383370 Number of partial orders on {1,2,...,n} that are contained in the usual linear order, whose dual is given by the relabelling k -> n+1-k.
1, 1, 2, 3, 12, 25, 172, 482, 5318, 19675, 333768, 1609846, 40832554, 254370640, 9459449890, 75546875426, 4061670272088
Offset: 0
Examples
The Boolean matrices corresponding to a(4) = 12: 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 . 1 0 1 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 . 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
Programs
-
SageMath
def a(n): S = set() for P in Posets(n): if P.is_isomorphic(P.dual()): for l in P.linear_extensions(): t = tuple(tuple(int(P.is_lequal(l[j],l[i])) for j in range(i)) for i in range(1,len(l))) if all(t[j][i]==t[n-i-2][n-j-2] for i in range((n-1)//2) for j in range(i,n-i-2)): S.add(t) return len(S)
Extensions
a(10)-a(16) from Christian Sievers, May 02 2025
Comments