cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A383382 Expansion of e.g.f. exp(-3*x) / (1-x)^5.

Original entry on oeis.org

1, 2, 9, 48, 321, 2502, 22329, 223668, 2481921, 30187242, 399071529, 5694475608, 87197543361, 1425766728942, 24787205125209, 456477484618908, 8875541469155841, 181670665706512722, 3904395263350689609, 87898121215165479168, 2068411075529464370241, 50778930934558144895382
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-3*x)/(1-x)^5))

Formula

a(n) = n! * Sum_{k=0..n} (-3)^(n-k) * binomial(k+4,4)/(n-k)!.
a(0) = 1, a(1) = 2; a(n) = (n+1)*a(n-1) + 3*(n-1)*a(n-2).
a(n) ~ sqrt(2*Pi) * n^(n + 9/2) / (24*exp(n+3)). - Vaclav Kotesovec, Apr 25 2025

A383383 Expansion of e.g.f. exp(-4*x) / (1-x)^5.

Original entry on oeis.org

1, 1, 6, 26, 176, 1296, 11296, 110176, 1197696, 14304896, 186166016, 2620022016, 39631568896, 640971452416, 11034441916416, 201411030081536, 3884642996289536, 78929236862140416, 1684881987266215936, 37695662812132212736, 881964287274876665856, 21536903057742987001856
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2025

Keywords

Crossrefs

Column k=4 of A383341.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-4*x)/(1-x)^5))

Formula

a(n) = n! * Sum_{k=0..n} (-4)^(n-k) * binomial(k+4,4)/(n-k)!.
a(0) = a(1) = 1; a(n) = n*a(n-1) + 4*(n-1)*a(n-2).
a(n) = A383344(n+2)/(4*(n+1)).
a(n) ~ sqrt(2*Pi) * n^(n + 9/2) / (24*exp(n+4)). - Vaclav Kotesovec, Apr 25 2025

A383384 Expansion of e.g.f. exp(-5*x) / (1-x)^5.

Original entry on oeis.org

1, 0, 5, 10, 105, 620, 5725, 52950, 571025, 6686200, 85871925, 1193029250, 17846277625, 285737086500, 4874590170125, 88245858436750, 1689282139310625, 34088182903910000, 723088091207873125, 16083522103093616250, 374280288623526655625, 9093957982779894737500
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2025

Keywords

Crossrefs

Column k=5 of A295181.
Cf. A000166.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[-5x]/(1-x)^5,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Sep 04 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-5*x)/(1-x)^5))

Formula

a(n) = n! * Sum_{k=0..n} (-5)^(n-k) * binomial(k+4,4)/(n-k)!.
a(n) = (n-1) * (a(n-1) + 5*a(n-2)) for n > 1.
E.g.f.: B(x)^5, where B(x) is the e.g.f. of A000166.
a(n) ~ sqrt(2*Pi) * n^(n + 9/2) / (24*exp(n+5)). - Vaclav Kotesovec, Apr 25 2025

A383380 Expansion of e.g.f. exp(-2*x) / (1-x)^4.

Original entry on oeis.org

1, 2, 8, 40, 248, 1808, 15136, 142784, 1496960, 17254144, 216740864, 2945973248, 43065951232, 673626675200, 11224114860032, 198447384666112, 3710328985124864, 73136238041563136, 1515739708283944960, 32947698735175172096, 749499782353468522496, 17806903161183314378752
Offset: 0

Views

Author

Seiichi Manyama, Apr 24 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-2*x)/(1-x)^4))

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A000255.
a(n) = n! * Sum_{k=0..n} (-2)^(n-k) * binomial(k+3,3)/(n-k)!.
a(0) = 1, a(1) = 2; a(n) = (n+1)*a(n-1) + 2*(n-1)*a(n-2).
a(n) ~ sqrt(Pi) * n^(n + 7/2) / (3*sqrt(2)*exp(n+2)). - Vaclav Kotesovec, Apr 25 2025
Showing 1-4 of 4 results.