cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383431 a(n) is the denominator of tanh(Sum_{k=1..n-1} artanh(k/n)), where artanh is the inverse hyperbolic tangent function.

Original entry on oeis.org

1, 2, 11, 18, 127, 463, 1717, 3218, 24311, 92379, 352717, 1352079, 5200301, 20058301, 77558761, 150270098, 1166803111, 4537567651, 17672631901, 68923264411, 269128937221, 1052049481861, 4116715363801, 16123801841551, 63205303218877, 247959266474053, 973469712824057, 3824345300380221, 15033633249770521
Offset: 1

Views

Author

Thomas Ordowski, Apr 27 2025

Keywords

Comments

a(2^m) is even for m > 0.

Examples

			Denominators of 0, 1/2, 9/11, 17/18, 125/127, 461/463, 1715/1717, 3217/3218, ...
		

Crossrefs

Cf. A001700, A382257 (numerators).

Formula

a(n) = (binomial(2n-1, n-1) + 1)/2 if n = 2^m or a(n) = binomial(2n-1, n-1) + 1 otherwise, because tanh(Sum_{k=1..n-1} artanh(k/n)) = (binomial(2n-1, n-1) - 1)/(binomial(2n-1, n-1) + 1) reduced.
a(n) = A382257(n) + 1 if n = 2^m or a(n) = A382257(n) + 2 otherwise.