A383453 The Geode Bi-Tri infinite rectangular array, read by upward antidiagonals.
1, 2, 3, 5, 16, 12, 14, 70, 110, 55, 42, 288, 702, 728, 273, 132, 1155, 3850, 6160, 4760, 1428, 429, 4576, 19448, 42432, 50388, 31008, 7752, 1430, 18018, 93366, 259350, 418950, 395010, 201894, 43263, 4862, 70720, 433160, 1466080, 3010700, 3853696, 3010700, 1315600, 246675
Offset: 0
Examples
The array begins: 1, 3, 12, 55, 273, 1428, ... 2, 16, 110, 728, 4760, 31008, ... 5, 70, 702, 6160, 50388, 395010, ... 14, 288, 3850, 42432, 418950, 3853696, ... 42, 1155, 19448, 259350, 3010700, 31870410, ... 132, 4576, 93366, 1466080, 19612560, 235282320, ... 429, 18018, 433160, 7845024, 119041650, 1598394798, ... 1430, 70720, 1961256, 40310400, 685026342, 10189625600, ... ... The first few antidiagonals are: [ 1], [ 2, 3], [ 5, 16, 12], [ 14, 70, 110, 55], [ 42, 288, 702, 728, 273], [132, 1155, 3850, 6160, 4760, 1428], [429, 4576, 19448, 42432, 50388, 31008, 7752], ...
Links
- N. J. Wildberger and Dean Rubine, A Hyper-Catalan Series Solution to Polynomial Equations, and the Geode, Amer. Math. Monthly (2025).
Crossrefs
Formula
The entry (m2, m3) of the rectangular array is equal to (2*m2 + 3*m3 + 3)!/((2*m2 + 2*m3 + 3)*(m2 + m3 + 1)*(m2 + 2*m3 + 2)! * m2! * m3!), with m2, m3 >= 0.