A383454 Row 1 of the array in A383453.
2, 16, 110, 728, 4760, 31008
Offset: 0
Crossrefs
Cf. A383453.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Triangle begins: 1; 3, 2; 12, 16, 5; 55, 110, 70, 14; 273, 728, 702, 288, 42; 1428, 4760, 6160, 3850, 1155, 132; ...
polrecip[P_, x_] := P /. x -> 1/x // Together // Numerator; P[n_, m_] := Sum[Binomial[m n + 1, k] Binomial[(m+1) n - k, n - k] (1-x)^k x^(n-k), {k, 0, n}]/(m n + 1); T[m_] := Reap[For[i=1, i <= 20, i++, z = polrecip[P[i, m], x] /. x -> 1+q; Sow[CoefficientList[z, q]]]][[2, 1]]; T[2] // Flatten (* Jean-François Alcover, Oct 08 2018, from PARI *)
N(n,m)=sum(k=0,n,binomial(m*n+1,k)*binomial((m+1)*n-k,n-k)*(1-x)^k*x^(n-k))/(m*n+1); T(m)=for(i=1,20,z=subst(polrecip(N(i,m)),x,1+q);print(Vecrev(z))); T(2) /* Lars Blomberg, Jul 17 2017 */
T(n,k) = binomial(3*n+1-k,n-k) * binomial(2*n,k-1) / n; \\ Andrew Howroyd, Nov 23 2018
a := n -> ((5*n + 3)!/((8*n^2 + 10*n + 3)*(n!)^2*(3*n + 2)!)):
Array[(5*# + 3)!/((8*#^2 + 10*# + 3)*(#!)^2*(3*# + 2)!) &, 16, 0] (* Michael De Vlieger, May 03 2025 *)
Comments