cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A383454 Row 1 of the array in A383453.

Original entry on oeis.org

2, 16, 110, 728, 4760, 31008
Offset: 0

Views

Author

N. J. A. Sloane, May 02 2025

Keywords

Crossrefs

Cf. A383453.

A383457 Column 2 of the array in A383453.

Original entry on oeis.org

12, 110, 702, 3850, 19448, 93366, 433160, 1961256
Offset: 0

Views

Author

N. J. A. Sloane, May 02 2025

Keywords

Crossrefs

Cf. A383453.

A383455 Row 2 of the array in A383453.

Original entry on oeis.org

5, 70, 702, 6160, 50388, 395010
Offset: 0

Views

Author

N. J. A. Sloane, May 02 2025

Keywords

Crossrefs

Cf. A383453.

A243660 Triangle read by rows: the x = 1+q Narayana triangle at m=2.

Original entry on oeis.org

1, 3, 2, 12, 16, 5, 55, 110, 70, 14, 273, 728, 702, 288, 42, 1428, 4760, 6160, 3850, 1155, 132, 7752, 31008, 50388, 42432, 19448, 4576, 429, 43263, 201894, 395010, 418950, 259350, 93366, 18018, 1430, 246675, 1315600, 3010700, 3853696, 3010700, 1466080, 433160, 70720, 4862
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2014

Keywords

Comments

See Novelli-Thibon (2014) for precise definition.
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)*...*(x+2n+1) / (n! * (2n+1)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 09 2022
The Maple code T(n,k) := binomial(3*n+1-k,n-k)*binomial(2*n,k-1)/n: with(sumtools): sumrecursion( (-1)^(k+1)*T(n,k)*binomial(x+3*n-k+1, 3*n-k+1), k, s(n) ); returns the recurrence 2*(2*n+1)*n^2*s(n) = (x+n)*(x+2*n)*(x+2*n+1)*s(n-1). The above observation follows from this. - Peter Bala, Oct 30 2022

Examples

			Triangle begins:
     1;
     3,    2;
    12,   16,    5;
    55,  110,   70,   14;
   273,  728,  702,  288,   42;
  1428, 4760, 6160, 3850, 1155,  132;
  ...
		

Crossrefs

Row sums give A034015(n-1).
The case m=1 is A126216 or A033282 (its mirror image).
The case m=3 is A243661.
The right diagonal is A000108.
The left column is A001764.
Same table as A383453, transposed. - Dan Eilers, May 06 2025

Programs

  • Mathematica
    polrecip[P_, x_] := P /. x -> 1/x // Together // Numerator;
    P[n_, m_] := Sum[Binomial[m n + 1, k] Binomial[(m+1) n - k, n - k] (1-x)^k x^(n-k), {k, 0, n}]/(m n + 1);
    T[m_] := Reap[For[i=1, i <= 20, i++, z = polrecip[P[i, m], x] /. x -> 1+q; Sow[CoefficientList[z, q]]]][[2, 1]];
    T[2] // Flatten (* Jean-François Alcover, Oct 08 2018, from PARI *)
  • PARI
    N(n,m)=sum(k=0,n,binomial(m*n+1,k)*binomial((m+1)*n-k,n-k)*(1-x)^k*x^(n-k))/(m*n+1);
    T(m)=for(i=1,20,z=subst(polrecip(N(i,m)),x,1+q);print(Vecrev(z)));
    T(2)  /* Lars Blomberg, Jul 17 2017 */
    
  • PARI
    T(n,k) = binomial(3*n+1-k,n-k) * binomial(2*n,k-1) / n; \\ Andrew Howroyd, Nov 23 2018

Formula

From Werner Schulte, Nov 23 2018: (Start)
T(n,k) = binomial(3*n+1-k,n-k) * binomial(2*n,k-1) / n.
More generally: T(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(m*n,k-1) / n, where m = 2.
Sum_{k=1..n} (-1)^k * T(n,k) = -1. (End)

Extensions

Corrected example and a(22)-a(43) from Lars Blomberg, Jul 12 2017
a(44)-a(45) from Werner Schulte, Nov 23 2018

A383440 a(n) = (5*n + 3)!/((8*n^2 + 10*n + 3)*(n!)^2*(3*n + 2)!).

Original entry on oeis.org

1, 16, 702, 42432, 3010700, 235282320, 19615029280, 1712821144320, 154870831986156, 14388837044278400, 1366276815032189060, 132069279628944665280, 12957831870375876372252, 1287484157116598357029120, 129316124278441748161584000, 13111175417326191857901849600
Offset: 0

Views

Author

Peter Luschny, May 03 2025

Keywords

Crossrefs

Programs

  • Maple
    a := n -> ((5*n + 3)!/((8*n^2 + 10*n + 3)*(n!)^2*(3*n + 2)!)):
  • Mathematica
    Array[(5*# + 3)!/((8*#^2 + 10*# + 3)*(#!)^2*(3*# + 2)!) &, 16, 0] (* Michael De Vlieger, May 03 2025 *)

Formula

a(n) = A383453(2*n, n), conjectured by Wildberger-Rubine to be the main diagonal of the Geode Bi-Tri array G[m_2, m_3].
a(n) ~ 3^(-3*n-5/2)*5^(5*n+7/2)/(16*n^2*Pi). - Stefano Spezia, May 03 2025

A383456 a(n) = 2*binomial(2*n+4,n)*(n+3)/(n+2).

Original entry on oeis.org

3, 16, 70, 288, 1155, 4576, 18018, 70720, 277134, 1085280, 4249388, 16640960, 65189475, 255487680, 1001800650, 3930284160, 15427730010, 60591880800, 238098549780, 936100651200, 3682173186510, 14490838080576, 57053452670100, 224729967000448, 885568808835900, 3491063797713856, 13767643081368792, 54315062063687040, 214354554086311331
Offset: 0

Views

Author

N. J. A. Sloane, May 02 2025

Keywords

Comments

Conjectured to be column 1 of the array in A383453.

Crossrefs

Cf. A383453.
Showing 1-6 of 6 results.