A383478 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(2,0),(3,0),(0,1).
1, 2, 9, 44, 220, 1134, 5950, 31608, 169488, 915420, 4972825, 27141036, 148711836, 817516196, 4506838380, 24906188912, 137933068572, 765324011736, 4253501563156, 23675286219200, 131955035141160, 736347621539310, 4113559552360230, 23003228298637080
Offset: 0
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 0..1316
Programs
-
Maple
f:= proc(x,y) option remember; local t; t:= 0; if x >= 1 then t:= t + procname(x-1,y) fi; if x >= 2 then t:= t + procname(x-2,y) fi; if x >= 3 then t:= t + procname(x-3,y) fi; if y >= 1 then t:= t + procname(x,y-1) fi; t end proc: f(0,0):= 1: seq(f(n,n),n=0..25); # Robert Israel, May 28 2025
Formula
a(n) = [x^n] 1/(1 - x - x^2 - x^3)^(n+1).
a(n) = (n+1) * A063018(n+1).