cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A383480 Number of lattice paths from (0,0) to (n,n) using steps (1,0),(4,0),(0,1).

Original entry on oeis.org

1, 2, 6, 20, 75, 294, 1176, 4752, 19350, 79310, 326898, 1353768, 5628441, 23478700, 98217840, 411879264, 1730924700, 7287941340, 30736775190, 129825892000, 549096132585, 2325216522420, 9857299586700, 41830206233400, 177673556967075, 755307883986084, 3213402383779812
Offset: 0

Views

Author

Seiichi Manyama, Apr 28 2025

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(x,y) option remember;
         local t;
         t:= 0;
         if x >= 1 then t:= t + procname(x-1,y) fi;
         if x >= 4 then t:= t + procname(x-4,y) fi;
         if y >= 1 then t:= t + procname(x,y-1) fi;
         t
    end proc:
    f(0,0):= 1:
    seq(f(n,n),n=0..26); # Robert Israel, May 28 2025
  • PARI
    a(n) = sum(k=0, n\4, binomial(n+k, k)*binomial(2*n-3*k, n-4*k));

Formula

a(n) = [x^n] 1/(1 - x - x^4)^(n+1).
a(n) = (n+1) * A063021(n+1).
a(n) = Sum_{k=0..floor(n/4)} binomial(n+k,k) * binomial(2*n-3*k,n-4*k).
Showing 1-1 of 1 results.