A383551 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,1),(3,3).
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 21, 15, 6, 1, 1, 7, 21, 37, 37, 21, 7, 1, 1, 8, 28, 59, 76, 59, 28, 8, 1, 1, 9, 36, 88, 138, 138, 88, 36, 9, 1, 1, 10, 45, 125, 230, 282, 230, 125, 45, 10, 1, 1, 11, 55, 171, 360, 522, 522, 360, 171, 55, 11, 1
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, 7, ... 1, 3, 6, 10, 15, 21, 28, ... 1, 4, 10, 21, 37, 59, 88, ... 1, 5, 15, 37, 76, 138, 230, ... 1, 6, 21, 59, 138, 282, 522, ... 1, 7, 28, 88, 230, 522, 1065, ...
Crossrefs
Main diagonal gives A376791.
Programs
-
PARI
a(n, k) = my(x='x+O('x^(n+1)), y='y+O('y^(k+1))); polcoef(polcoef(1/(1-x-y-x^3*y^3), n), k);
Formula
A(n,k) = A(k,n).
A(n,k) = A(n-1,k) + A(n,k-1) + A(n-3,k-3).
G.f.: 1 / (1 - x - y - x^3*y^3).