cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A383567 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (2,0),(0,2),(5,5).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 6, 0, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 5, 0, 10, 1, 10, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 0, 15, 2, 20, 2, 15, 0, 6, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Examples

			Square array A(n,k) begins:
  1, 0, 1, 0,  1, 0,  1, 0,  1, ...
  0, 0, 0, 0,  0, 0,  0, 0,  0, ...
  1, 0, 2, 0,  3, 0,  4, 0,  5, ...
  0, 0, 0, 0,  0, 0,  0, 0,  0, ...
  1, 0, 3, 0,  6, 0, 10, 0, 15, ...
  0, 0, 0, 0,  0, 1,  0, 2,  0, ...
  1, 0, 4, 0, 10, 0, 20, 0, 35, ...
  0, 0, 0, 0,  0, 2,  0, 6,  0, ...
  1, 0, 5, 0, 15, 0, 35, 0, 70, ...
		

Crossrefs

Main diagonal gives A383568.

Programs

  • PARI
    a(n, k) = my(x='x+O('x^(n+1)), y='y+O('y^(k+1))); polcoef(polcoef(1/(1-x^2-y^2-x^5*y^5), n), k);

Formula

A(n,k) = A(k,n).
If n - k == 1 (mod 2), A(n,k) = 0.
A(n,k) = A(n-2,k) + A(n,k-2) + A(n-5,k-5).
G.f.: 1 / (1 - x^2 - y^2 - x^5*y^5).

A383569 Expansion of 1/sqrt((1-x^7)^2 - 4*x^2).

Original entry on oeis.org

1, 0, 2, 0, 6, 0, 20, 1, 70, 6, 252, 30, 924, 140, 3433, 630, 12882, 2772, 48710, 12012, 185316, 51481, 708582, 218810, 2720788, 923990, 10484684, 3881556, 40528441, 16236486, 157086660, 67675972, 610318610, 281236620, 2376289056, 1165715161, 9269869182
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (2,0),(0,2),(7,7).
Diagonal of the rational function 1 / (1 - x^2 - y^2 - x^7*y^7).
Diagonal of the rational function 1 / ((1-x^2*y)*(1-x^5*y^6) - y).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-x^7)^2-4x^2],{x,0,40}],x] (* Harvey P. Dale, Aug 09 2025 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt((1-x^7)^2-4*x^2))
Showing 1-2 of 2 results.