cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383599 Expansion of 1/( (1-x^3)^2 * (1-x^3-9*x) )^(1/3).

Original entry on oeis.org

1, 3, 18, 127, 951, 7425, 59473, 484902, 4005720, 33425587, 281152551, 2380227705, 20259341335, 173218395228, 1486747223136, 12803424371263, 110579924167533, 957494150283249, 8309596928695417, 72260720257071936, 629526082305028041, 5493357757059584986
Offset: 0

Views

Author

Seiichi Manyama, May 01 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/( (1-x^3)^2 * (1-x^3-9*x) )^(1/3))); // Vincenzo Librandi, May 04 2025
  • Mathematica
    Table[Sum[(-9)^(n-3*k)* Binomial[-1/3, n-3*k]* Binomial[n-2*k,k],{k,0,Floor[n/3]}],{n,0,22}] (* Vincenzo Librandi, May 04 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, (-9)^(n-3*k)*binomial(-1/3, n-3*k)*binomial(n-2*k, k));
    

Formula

a(n) = Sum_{k=0..floor(n/3)} (-9)^(n-3*k) * binomial(-1/3,n-3*k) * binomial(n-2*k,k).