A383649 Numbers k such that A206369(k) is prime.
3, 4, 6, 8, 9, 16, 18, 49, 64, 81, 98, 162, 169, 338, 625, 729, 1024, 1250, 1458, 4096, 4489, 6241, 8978, 12482, 14641, 19321, 22801, 26569, 29282, 37249, 38642, 45602, 53138, 65536, 74498, 113569, 121801, 143641, 208849, 227138, 243602, 262144, 287282, 292681, 375769, 413449, 417698
Offset: 1
Keywords
Examples
3 is a term since A206369(3) = 2, and 2 is a prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..122 from Shreyansh Jaiswal)
Programs
-
Mathematica
seq[max_] := Module[{s = {3, 6}, e}, Do[e = Select[Range[2, Floor[Log[p, max]]], PrimeQ[Sum[(-1)^(# - k)*p^k, {k, 0, #}]] &]; s = Join[s, p^e]; If[p > 2, e = Select[e, # <= Floor[Log[p, max/2]] &]; s = Join[s, 2*p^e]], {p, Prime[Range[Floor[Sqrt[max]]]]}]; Sort[s]]; seq[500000] (* Amiram Eldar, May 04 2025 *)
-
PARI
isok(k) = ispseudoprime(sumdiv(k, d, eulerphi(k/d) * issquare(d))); \\ Michel Marcus, May 04 2025
-
Python
from math import prod; from sympy import * def ok(n): return isprime(prod((lambda x:x[0]+int((x[1]<<1)>=p+1))(divmod(p**(e+1), p+1)) for p, e in factorint(n).items())) # using code from Chai Wah Wu in A206369 print([k for k in range(1,10**5) if ok(k)])
Comments