A385881 Algebraic rank of elliptic curve y^2 = x^3 - n*x - n.
0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, 2, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1
Offset: 1
Examples
a(1) = 0 because y^2 = x^3 - x - 1 has rank 0.
Links
- LMFDB, y^2 = x^3 - x - 1.
Programs
-
PARI
a(n) = ellanalyticrank( ellinit([0, 0, 0, -n, -n]) )[1]; \\ Michel Marcus, Aug 20 2025
-
SageMath
for k in range(1, 43): E = EllipticCurve([-k, -k]) print(E.rank(), end=", ")
Extensions
More terms from Michel Marcus, Aug 20 2025
Comments