cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383654 a(n) is the number k such that A383653(n)^4 is the sum of squares of k consecutive integers.

Original entry on oeis.org

2, 2, 169, 242, 177, 352, 1536, 2401, 40898, 163607, 230121, 60625, 218089, 185761, 19512097, 47761921, 1170329056, 1224370081, 7957888849, 10842382346, 11474926944, 208152552417, 12230369281, 190412616875, 497818686976, 72899460001, 1384334025217, 313455536641
Offset: 1

Views

Author

Xianwen Wang, May 04 2025

Keywords

Examples

			Case a(1)=2: 13^4 = 119^2 + 120^2, 1^4 = 0^2 + 1^2.
Case a(3)=169: 26^4 = (-67+1)^2 + (-67+2)^2 + ... + (-67+168)^2 + (-67+169)^2.
Case a(5)=177: 295^4 = (6452+1)^2 + (6452+2)^2 + ... + (6452+176)^2 + (6452+177)^2.
...
Case a(10)=163607: 5546^4 = (-22206+1)^2 + (-22206+2)^2 + ... + (-22206+163606)^2 + (-22206+163607)^2.
		

Crossrefs

Programs

  • Mathematica
    lst={};Monitor[Do[mm=6 m^4;div=TakeWhile[Divisors[mm][[2;;-2]],2mm/#+1>#^2&];
    ans=Select[div,IntegerQ[Sqrt[(2mm/#+1-#^2)/3]]&&Mod[#-Sqrt[(2mm/#+1-#^2)/3],2]==1&];
    If[Length[ans]>0,tmp={m,{#,q=Sqrt[(2mm/#+1-#^2)/3],p=(q+1-#)/2}&/@ans};Print[tmp];
    AppendTo[lst,tmp]],{m,1,10^4}],m];lst