A383664 Number of closed knight's tours in the first 2n cells of an 8 X ceiling(2n/8) board.
4, 12, 212, 0, 50, 4525, 101730, 44202, 66034, 2408624, 69362264, 55488142, 101343548, 2398536889, 43391615822, 34524432316, 52661182514, 1231713564493, 20780788492646, 13267364410532, 21515340977481, 552407941427835, 10211663162678661, 7112881119092574, 11873618786859165
Offset: 13
Keywords
Examples
For n=13 the a(13)=4 solutions are 1 4 25 12 24 11 2 5 3 26 13 10 23 6 7 14 9 22 17 20 19 8 15 16 21 18 ; 1 4 25 12 24 11 2 5 3 26 13 10 23 6 7 14 9 20 15 22 15 8 19 18 21 16 ; 1 14 25 22 24 21 2 15 13 26 23 20 3 16 17 12 19 4 9 6 7 18 11 10 5 8 ; 1 14 25 22 24 21 2 15 13 26 23 20 3 16 17 12 19 6 9 4 11 18 7 8 5 10 .
References
- Donald E. Knuth, Hamiltonian paths and cycles, Prefascicle 8a of The Art of Computer Programming (work in progress, 2025).
Links
- Don Knuth, Table of n, a(n) for n = 13..96
- Don Knuth, CWEB program with input parameter board,32,8,0,0,5,0,0.gb [the graph "board(50, 6, 0, 0, 5, 0, 0)" generated by the Stanford GraphBase].
Formula
a(4n) = A193055(n).
Comments