A384255
Integers k such that there exists an integer 0
2, 21, 27, 123, 175, 2133, 2187, 6093, 340917, 504309, 1594323, 1895841, 5308415, 23006577, 62188641
Offset: 1
Examples
(13, 21) is such a pair because sigma(13)^2 + sigma(21)^2 = 14^2 + 32^2 = 2*(13^2+21^2).
Links
- S. I. Dimitrov, Generalizations of amicable numbers, arXiv:2408.07387 [math.NT], 2024.
Programs
-
Mathematica
f[n_]:=f[n]=DivisorSigma[1,n]^2-2*n^2;lst={};Do[AppendTo[lst,f@k];If[MemberQ[lst,-f@k],Print@k],{k,10000}] (* Giorgos Kalogeropoulos, May 29 2025 *)
-
PARI
isok(k) = for(m=1, k-1, if (sigma(m)^2 + sigma(k)^2 == 2*(m^2+k^2), return(1))); \\ Michel Marcus, May 23 2025
Extensions
a(9)-a(15) from Giorgos Kalogeropoulos, May 29 2025
Comments