A383726
Square array read by ascending antidiagonals, where row n lists numbers m such that omega(m) = n and the largest prime factor of m equals the sum of its remaining distinct prime factors, where omega(m) = A001221(m).
Original entry on oeis.org
30, 3135, 60, 3570, 6279, 70, 844305, 7140, 8855, 90, 1231230, 1218945, 8970, 9405, 120
Offset: 3
Array begins:
n\k| 1 2 3 4 5 ...
-----------------------------------------------------
3 | 30, 60, 70, 90, 120, ... = A365795
4 | 3135, 6279, 8855, 9405, 10695, ... = A383728
5 | 3570, 7140, 8970, 10626, 10710, ... = A383729
6 | 844305, 1218945, 2496585, 2532915, 3024021, ...
7 | 1231230, 2062830, 2181270, 2462460, 3327870, ...
... | \______ A383727 (main diagonal)
A383725
-
Module[{dmax = 5, a, m}, a = Table[m = Times @@ Prime[Range[n]] - 1; Table[While[Length[#] != n || Total[Most[#]] != Last[#] & [FactorInteger[++m][[All,1]]]]; m, dmax-n+3], {n, dmax+2, 3, -1}]; Array[Diagonal[a, # - dmax] &, dmax]]
A383728
Numbers k such that omega(k) = 4 and the largest prime factor of k equals the sum of its remaining distinct prime factors, where omega(k) = A001221(k).
Original entry on oeis.org
3135, 6279, 8855, 9405, 10695, 11571, 15675, 16095, 17255, 17391, 18837, 20615, 20735, 26691, 28083, 28215, 31031, 32085, 34485, 34713, 36519, 41151, 41615, 43953, 44275, 45695, 46655, 47025, 47859, 48285, 48495, 50439, 52173, 53475, 54131, 56511, 56823, 57239, 59295, 59565
Offset: 1
32085 is a term because it has 4 distinct prime factors (3, 5, 23 and 31) and the largest one is the sum of the others (3 + 5 + 23 = 31).
-
N:= 10^5: # for terms <= N
P:= select(isprime,[2,seq(i,i=3..N/(3*5*7),2)]):
V:= NULL:
for j from 1 while P[j]^3*(3*P[j]) < N do
for k from j+1 while P[j]*P[k]^2*(P[j]+2*P[k]) < N do
for l from k+1 while P[j]*P[k]*P[l] * (P[j]+P[k]+P[l]) <= N do
p4:= P[j]+P[k]+P[l];
if not isprime(p4) then next fi;
for d1 from 1 while P[j]^d1 * P[k] * P[l] * p4 <= N do
for d2 from 1 while P[j]^d1 * P[k]^d2 * P[l] * p4 <= N do
for d3 from 1 while P[j]^d1 * P[k]^d2 * P[l]^d3 * p4 <= N do
for d4 from 1 while P[j]^d1 * P[k]^d2 * P[l]^d3 * p4^d4 <= N do
V:= V,P[j]^d1 * P[k]^d2 * P[l]^d3 * p4^d4
od od od od od od od:
sort([V]); # Robert Israel, Jun 09 2025
-
A383728Q[k_] := Length[#] == 4 && Total[Most[#]] == Last[#] & [FactorInteger[k][[All, 1]]];
Select[Range[10^5], A383728Q]
A383729
Numbers k such that omega(k) = 5 and the largest prime factor of k equals the sum of its remaining distinct prime factors, where omega(k) = A001221(k).
Original entry on oeis.org
3570, 7140, 8970, 10626, 10710, 14280, 16530, 17850, 17940, 20706, 21252, 21420, 24738, 24882, 24990, 26910, 28560, 31878, 32130, 33060, 35700, 35880, 36890, 38130, 41412, 42504, 42840, 44330, 44850, 49476, 49590, 49764, 49938, 49980, 52170, 53550, 53820, 54834, 55986, 57120
Offset: 1
10710 is a term because it has 5 distinct prime factors (2, 3, 5, 7 and 17) and the largest one is the sum of the others (2 + 3 + 5 + 7 = 17).
-
N:= 10^5: # for terms <= N
P:= select(isprime,[2,seq(i,i=3..N/(2*3*5*7),2)]):
V:= NULL:
i:= 1:
for j from i+1 while P[i]*P[j]^3*(P[i]+3*P[j]) < N do
for k from j+1 while P[i]*P[j]*P[k]^2*(P[i]+P[j]+2*P[k]) < N do
for l from k+1 while P[i]*P[j]*P[k]*P[l] * (P[i]+P[j]+P[k]+P[l]) <= N do
p5:= P[i]+P[j]+P[k]+P[l];
if not isprime(p5) then next fi;
for d1 from 1 while P[i]^d1 * P[j] * P[k] * P[l] * p5 <= N do
for d2 from 1 while P[i]^d1 * P[j]^d2 * P[k] * P[l] * p5 <= N do
for d3 from 1 while P[i]^d1 * P[j]^d2 * P[k]^d3 * P[l] * p5 <= N do
for d4 from 1 while P[i]^d1 * P[j]^d2 * P[k]^d3 * P[l]^d4 * p5 <= N do
for d5 from 1 while P[i]^d1 * P[j]^d2 * P[k]^d3 * P[l]^d4 * p5^d5 <= N do
V:= V,P[i]^d1 * P[j]^d2 * P[k]^d3 * P[l]^d4 * p5^d5
od od od od od od od od:
sort([V]); # Robert Israel, Jun 09 2025
-
A383729Q[k_] := Length[#] == 5 && Total[Most[#]] == Last[#] & [FactorInteger[k][[All, 1]]];
Select[Range[10^5], A383729Q]
A383677
Irregular triangle read by rows: T(n,k), 2 <= n , 3 <= k <= largest k such that A067175(k) <= n , is the smallest n-digit number m such that omega(m) = A001221(m) = k, and its largest prime factor equals the sum of its remaining prime factors. or -1 if no such number exists.
Original entry on oeis.org
30, 120, -1, 1080, 3135, 3570, 10336, 10695, 10626, -1, 100672, 102695, 103730, 844305, -1, 1003520, 1005039, 1003450, 1218945, 1231230, -1, 10017286, 10000295, 10003390, 10064145, 10314150, -1, 100216924, 100019275, 100017216, 100367745, 100327920, 463798335, -1
Offset: 2
T(4,3) = 1080 is the smallest 4-digit number having 3 distinct prime factors (namely 2, 3, and 5) such that the largest one is the sum of the others (2 + 3 = 5).
T(5,4) = 10695 is the smallest 5-digit number having 4 distinct prime factors (namely 3, 5, 23 and 31) such that the largest one is the sum of the others (3 + 5 + 23 = 31).
Triangle begins:
30;
120, -1;
1080, 3135, 3570;
10336, 10695, 10626, -1;
100672, 102695, 103730, 844305, -1;
1003520, 1005039, 1003450, 1218945, 1231230, -1;
...
A383858
Irregular triangle read by rows: T(n,k) (n >= 4, 4 <= k <= A384502(n)) is the smallest n-digit number m with k distinct prime factors, such that these factors can be divided into two subsets of at least two elements each, both summing to the same value. If no such number exists, T(n,k) = -1.
Original entry on oeis.org
2145, 2310, 10725, 10374, 101065, 100050, 255255, 510510, 1005993, 1000350, 1036035, 1009470, 10006081, 10000130, 10012065, 10004610, 100010225, 100001300, 100001195, 100009910, 111546435, 223092870, 1000083889, 1000008758, 1000001751, 1000005270, 1002569295, 1001110110
Offset: 4
T(4,4) = 2145 = 3*5*11*13 is the smallest four-digit number with four distinct prime factors (3, 5, 11, and 13), where the prime factors can be partitioned into two subsets of at least two elements each, both summing to the same value: 3+13 = 5+11.
T(5,4) = 2310 = 2*3*5*7*11 is the smallest five-digit number with four distinct prime factors (2, 3, 5, 7 and 11), where the prime factors can be partitioned into two subsets of at least two elements each, both summing to the same value: 3+11 = 2+5+7.
The lower triangle begins at T(4,4):
[ 2145, 2310];
[ 10725, 10374];
[ 101065, 100050, 255255, 510510];
[ 1005993, 1000350, 1036035, 1009470];
[ 10006081, 10000130, 10012065, 10004610];
[100010225, 100001300, 100001195, 100009910, 111546435, 223092870]; ...
Showing 1-5 of 5 results.
Comments