cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A383726 Square array read by ascending antidiagonals, where row n lists numbers m such that omega(m) = n and the largest prime factor of m equals the sum of its remaining distinct prime factors, where omega(m) = A001221(m).

Original entry on oeis.org

30, 3135, 60, 3570, 6279, 70, 844305, 7140, 8855, 90, 1231230, 1218945, 8970, 9405, 120
Offset: 3

Views

Author

Paolo Xausa, May 07 2025

Keywords

Examples

			Array begins:
  n\k|       1        2        3        4        5  ...
  -----------------------------------------------------
   3 |      30,      60,      70,      90,     120, ... = A365795
   4 |    3135,    6279,    8855,    9405,   10695, ... = A383728
   5 |    3570,    7140,    8970,   10626,   10710, ... = A383729
   6 |  844305, 1218945, 2496585, 2532915, 3024021, ...
   7 | 1231230, 2062830, 2181270, 2462460, 3327870, ...
  ...     |                                       \______ A383727 (main diagonal)
       A383725
		

Crossrefs

Programs

  • Mathematica
    Module[{dmax = 5, a, m}, a = Table[m = Times @@ Prime[Range[n]] - 1; Table[While[Length[#] != n || Total[Most[#]] != Last[#] & [FactorInteger[++m][[All,1]]]]; m, dmax-n+3], {n, dmax+2, 3, -1}]; Array[Diagonal[a, # - dmax] &, dmax]]

A383728 Numbers k such that omega(k) = 4 and the largest prime factor of k equals the sum of its remaining distinct prime factors, where omega(k) = A001221(k).

Original entry on oeis.org

3135, 6279, 8855, 9405, 10695, 11571, 15675, 16095, 17255, 17391, 18837, 20615, 20735, 26691, 28083, 28215, 31031, 32085, 34485, 34713, 36519, 41151, 41615, 43953, 44275, 45695, 46655, 47025, 47859, 48285, 48495, 50439, 52173, 53475, 54131, 56511, 56823, 57239, 59295, 59565
Offset: 1

Views

Author

Paolo Xausa, May 08 2025

Keywords

Examples

			32085 is a term because it has 4 distinct prime factors (3, 5, 23 and 31) and the largest one is the sum of the others (3 + 5 + 23 = 31).
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    P:= select(isprime,[2,seq(i,i=3..N/(3*5*7),2)]):
    V:= NULL:
    for j from 1 while P[j]^3*(3*P[j]) < N do
      for k from j+1 while P[j]*P[k]^2*(P[j]+2*P[k]) < N do
        for l from k+1 while P[j]*P[k]*P[l] * (P[j]+P[k]+P[l]) <= N do
          p4:= P[j]+P[k]+P[l];
          if not isprime(p4) then next fi;
          for d1 from 1 while P[j]^d1 * P[k] * P[l] * p4 <= N do
           for d2 from 1 while P[j]^d1 * P[k]^d2 * P[l] * p4 <= N do
            for d3 from 1 while P[j]^d1 * P[k]^d2 * P[l]^d3  * p4 <= N do
             for d4 from 1 while  P[j]^d1 * P[k]^d2 * P[l]^d3 * p4^d4 <= N do
                 V:= V,P[j]^d1 * P[k]^d2 * P[l]^d3 * p4^d4
    od od od od od od od:
    sort([V]); # Robert Israel, Jun 09 2025
  • Mathematica
    A383728Q[k_] := Length[#] == 4 && Total[Most[#]] == Last[#] & [FactorInteger[k][[All, 1]]];
    Select[Range[10^5], A383728Q]

A383729 Numbers k such that omega(k) = 5 and the largest prime factor of k equals the sum of its remaining distinct prime factors, where omega(k) = A001221(k).

Original entry on oeis.org

3570, 7140, 8970, 10626, 10710, 14280, 16530, 17850, 17940, 20706, 21252, 21420, 24738, 24882, 24990, 26910, 28560, 31878, 32130, 33060, 35700, 35880, 36890, 38130, 41412, 42504, 42840, 44330, 44850, 49476, 49590, 49764, 49938, 49980, 52170, 53550, 53820, 54834, 55986, 57120
Offset: 1

Views

Author

Paolo Xausa, May 08 2025

Keywords

Examples

			10710 is a term because it has 5 distinct prime factors (2, 3, 5, 7 and 17) and the largest one is the sum of the others (2 + 3 + 5 + 7 = 17).
		

Crossrefs

Programs

  • Maple
    N:= 10^5: # for terms <= N
    P:= select(isprime,[2,seq(i,i=3..N/(2*3*5*7),2)]):
    V:= NULL:
    i:= 1:
    for j from i+1 while P[i]*P[j]^3*(P[i]+3*P[j]) < N do
      for k from j+1 while P[i]*P[j]*P[k]^2*(P[i]+P[j]+2*P[k]) < N do
        for l from k+1 while P[i]*P[j]*P[k]*P[l] * (P[i]+P[j]+P[k]+P[l]) <= N do
          p5:= P[i]+P[j]+P[k]+P[l];
          if not isprime(p5) then next fi;
          for d1 from 1 while P[i]^d1 * P[j] * P[k] * P[l] * p5 <= N do
           for d2 from 1 while P[i]^d1 * P[j]^d2 * P[k] * P[l] * p5 <= N do
            for d3 from 1 while P[i]^d1 * P[j]^d2 * P[k]^d3 * P[l] * p5 <= N do
             for d4 from 1 while P[i]^d1 * P[j]^d2 * P[k]^d3 * P[l]^d4 * p5 <= N do
               for d5 from 1 while  P[i]^d1 * P[j]^d2 * P[k]^d3 * P[l]^d4 * p5^d5 <= N do
                 V:= V,P[i]^d1 * P[j]^d2 * P[k]^d3 * P[l]^d4 * p5^d5
    od od od od od od od od:
    sort([V]); # Robert Israel, Jun 09 2025
  • Mathematica
    A383729Q[k_] := Length[#] == 5 && Total[Most[#]] == Last[#] & [FactorInteger[k][[All, 1]]];
    Select[Range[10^5], A383729Q]

A383677 Irregular triangle read by rows: T(n,k), 2 <= n , 3 <= k <= largest k such that A067175(k) <= n , is the smallest n-digit number m such that omega(m) = A001221(m) = k, and its largest prime factor equals the sum of its remaining prime factors. or -1 if no such number exists.

Original entry on oeis.org

30, 120, -1, 1080, 3135, 3570, 10336, 10695, 10626, -1, 100672, 102695, 103730, 844305, -1, 1003520, 1005039, 1003450, 1218945, 1231230, -1, 10017286, 10000295, 10003390, 10064145, 10314150, -1, 100216924, 100019275, 100017216, 100367745, 100327920, 463798335, -1
Offset: 2

Views

Author

Jean-Marc Rebert, May 11 2025

Keywords

Comments

For n ranging from 2 to 20, the corresponding maximum values of k are as follows: [3, 4, 5, 6, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16].

Examples

			T(4,3) = 1080 is the smallest 4-digit number having 3 distinct prime factors (namely 2, 3, and 5) such that the largest one is the sum of the others (2 + 3 = 5).
T(5,4) = 10695 is the smallest 5-digit number having 4 distinct prime factors (namely 3, 5, 23 and 31) such that the largest one is the sum of the others (3 + 5 + 23 = 31).
Triangle begins:
       30;
      120,      -1;
     1080,    3135,    3570;
    10336,   10695,   10626,      -1;
   100672,  102695,  103730,  844305,      -1;
  1003520, 1005039, 1003450, 1218945, 1231230, -1;
  ...
		

Crossrefs

A383858 Irregular triangle read by rows: T(n,k) (n >= 4, 4 <= k <= A384502(n)) is the smallest n-digit number m with k distinct prime factors, such that these factors can be divided into two subsets of at least two elements each, both summing to the same value. If no such number exists, T(n,k) = -1.

Original entry on oeis.org

2145, 2310, 10725, 10374, 101065, 100050, 255255, 510510, 1005993, 1000350, 1036035, 1009470, 10006081, 10000130, 10012065, 10004610, 100010225, 100001300, 100001195, 100009910, 111546435, 223092870, 1000083889, 1000008758, 1000001751, 1000005270, 1002569295, 1001110110
Offset: 4

Views

Author

Jean-Marc Rebert, May 12 2025

Keywords

Comments

The maximum values of k for each row n>=1 are respectively 0, 0, 0, 5, 5, 7, 7, ...
The corresponding sums are:
3+13 = 5+11, 3+11 = 2+5+7, 3+13 = 5+11, 3+19 = 2+7+13, 5+41 = 17+29, 2+29 = 3+5+23, 11+17 = 3+5+7+13, 5+7+17 = 2+3+11+13, 3+53 = 19+37, 2+19 = 3+5+13, 3+5+23 = 7+11+13, 5+7+23 = 2+3+11+19, 17+163 = 23+157, 2+383 = 5+7+373, 3+17+71 = 5+7+79, 2+7+71 = 3+5+11+61, 5+109 = 7+107, 2+383 = 5+7+373, 37+53 = 5+7+31+47, 5+11+103 = 2+7+13+97, 7+19+23 = 3+5+11+13+17, 3+5+19+23 = 2+7+11+13+17, ...

Examples

			T(4,4) = 2145 = 3*5*11*13 is the smallest four-digit number with four distinct prime factors (3, 5, 11, and 13), where the prime factors can be partitioned into two subsets of at least two elements each, both summing to the same value: 3+13 = 5+11.
T(5,4) = 2310 = 2*3*5*7*11 is the smallest five-digit number with four distinct prime factors (2, 3, 5, 7 and 11), where the prime factors can be partitioned into two subsets of at least two elements each, both summing to the same value: 3+11 = 2+5+7.
The lower triangle begins at T(4,4):
[     2145,      2310];
[    10725,     10374];
[   101065,    100050,    255255,    510510];
[  1005993,   1000350,   1036035,   1009470];
[ 10006081,  10000130,  10012065,  10004610];
[100010225, 100001300, 100001195, 100009910, 111546435, 223092870]; ...
		

Crossrefs

Showing 1-5 of 5 results.