cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383735 Array read by antidiagonals, where each row is the cluster series for percolation on the cells of a certain type of polyominoids.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 0, 1, 0, 2, 0, 2, 1, 0, 2, 0, 2, 4, 1, 0, 2, 0, 2, 12, 6, 1, 0, 2, 0, 2, 24, 18, 0, 1, 0, 2, 0, 2, 52, 48, 0, 4, 1, 0, 2, 0, 2, 108, 126, 0, 12, 4, 1, 0, 2, 0, 2, 224, 300, 0, 24, 12, 8, 1, 0, 2, 0, 2, 412, 762, 0, 52, 24, 32, 0, 1
Offset: 1

Views

Author

Pontus von Brömssen, May 10 2025

Keywords

Comments

T(n,k) is the coefficient of p^(k+1), k >= 0, in the power series expansion of the expected finite size of the cluster containing a given cell for percolation with probability p on the polyominoid cells corresponding to row n of A366766. If the given cell is not open, its cluster is empty. Equivalently, T(n,k) can be taken to be the coefficient of p^k if we condition on the event that the given cell is open.
See A366766 for details on how the polyominoids are specified and on the ordering of the rows.

Examples

			Array begins:
  n\k| 0  1  2   3   4    5    6    7     8     9     10     11      12
  ---+-----------------------------------------------------------------
   1 | 1  0  0   0   0    0    0    0     0     0      0      0       0
   2 | 1  2  2   2   2    2    2    2     2     2      2      2       2
   3 | 1  0  0   0   0    0    0    0     0     0      0      0       0
   4 | 1  2  2   2   2    2    2    2     2     2      2      2       2
   5 | 1  4 12  24  52  108  224  412   844  1528   3152   5036   11984
   6 | 1  6 18  48 126  300  762 1668  4216  8668  21988  43058  110832
   7 | 1  0  0   0   0    0    0    0     0     0      0      0       0
   8 | 1  4 12  24  52  108  224  412   844  1528   3152   5036   11984
   9 | 1  4 12  24  52  108  224  412   844  1528   3152   5036   11984
  10 | 1  8 32 108 348 1068 3180 9216 26452 73708 206872 563200 1555460
  11 | 1  0  0   0   0    0    0    0     0     0      0      0       0
  12 | 1  2  2   2   2    2    2    2     2     2      2      2       2
		

Crossrefs

Rows include:
n | sequence for row n
---+-------------------
1 | A000007
2 | A040000
3 | A000007
4 | A040000
5 | A003203
6 | A003198
7 | A000007
8 | A003203
9 | A003203
10 | A003201
11 | A000007
12 | A040000
13 | A383737
14 | A003207
15 | A000007
16 | A003203
17 | A383737
18 | A383736
19 | A003203
20 | A003201
...
31 | A000007
32 | A003211
33 | A003209
34 | A036396
35 | A003210
...
38 | A036402
39 | A000007
40 | A040000
...
43 | A000007
44 | A003203
...
47 | A003203
48 | A003201

Formula

T(n,k) = [p^k] Sum_P m^2*p^(m-1)*(1-p)^j / binomial(D,d) = Sum_P m^2*(-1)^(k-m+1)*binomial(j,k-m+1) / binomial(D,d), where the sum is over all fixed polyominoids P (corresponding to row n of A366766), m is the number of cells of P, and j is the number of cells that are not in P but are adjacent to a cell in P; d is the dimension of the cells and D is the dimension of the ambient space. It is sufficient to take the sums over those P that have at most k+1 cells.