A383742 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of g.f. x/(1 - A002203(k)*x + (-1)^k*x^2).
0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 6, 5, 4, 0, 1, 14, 35, 12, 5, 0, 1, 34, 197, 204, 29, 6, 0, 1, 82, 1155, 2772, 1189, 70, 7, 0, 1, 198, 6725, 39236, 39005, 6930, 169, 8, 0, 1, 478, 39203, 551532, 1332869, 548842, 40391, 408, 9, 0, 1, 1154, 228485, 7761996, 45232349, 45278310, 7722793, 235416, 985, 10
Offset: 0
Examples
Square array begins: 0, 0, 0, 0, 0, 0, ... 1, 1, 1, 1, 1, 1, ... 2, 2, 6, 14, 34, 82, ... 3, 5, 35, 197, 1155, 6725, ... 4, 12, 204, 2772, 39236, 551532, ... 5, 29, 1189, 39005, 1332869, 45232349, ...
Crossrefs
Programs
-
Mathematica
A[n_, k_] := Fibonacci[k*n, 2]/Fibonacci[k, 2]; A[n_, 0] := n; Table[A[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 08 2025 *)
-
PARI
pell(n) = ([2, 1; 1, 0]^n)[2, 1]; a(n, k) = if(k==0, n, pell(k*n)/pell(k));
Formula
A(0,k) = 0, A(1,k) = 1; A(n,k) = A002203(k) * A(n-1,k) - (-1)^k * A(n-2,k) for n > 1.
A(n,k) = Pell(k*n)/Pell(k) for k > 0.