A380083
a(n) = Pell(n^2)/Pell(n).
Original entry on oeis.org
1, 6, 197, 39236, 45232349, 304285766994, 11928254138546089, 2725453049877127789064, 3629520789795568149638626009, 28171611459441395148628640333550174, 1274457582507820938168220698796661580252461, 336039604487720392926819615640785342048933644491212
Offset: 1
-
a:= n-> (f->f(n^2)/f(n))(k->(<<2|1>, <1|0>>^k)[1, 2]):
seq(a(n), n=1..12); # Alois P. Heinz, May 08 2025
-
a[n_] := Fibonacci[n^2, 2]/Fibonacci[n, 2]; Array[a, 12] (* Amiram Eldar, May 08 2025 *)
-
pell(n) = ([2, 1; 1, 0]^n)[2, 1];
a(n) = pell(n^2)/pell(n);
A383740
a(0) = 4; a(n) = Pell(4*n)/Pell(n) for n > 0.
Original entry on oeis.org
4, 12, 204, 2772, 39236, 551532, 7761996, 109216308, 1536797956, 21624369228, 304278011724, 4281516425748, 60245508232004, 847718631046572, 11928306344398284, 167844007448966772, 2361744410638758916, 33232265756370284172, 467613464999874177996, 6579820775754484587348
Offset: 0
-
a[n_] := Fibonacci[4*n, 2]/Fibonacci[n, 2]; a[0] = 4; Array[a, 20, 0] (* Amiram Eldar, May 08 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(4*(1-9*x-15*x^2+3*x^3)/((1+2*x-x^2)*(1-14*x-x^2)))
A383741
a(0) = 5; a(n) = Pell(5*n)/Pell(n) for n > 0.
Original entry on oeis.org
5, 29, 1189, 39005, 1332869, 45232349, 1536836005, 52205623709, 1773463509509, 60245500431005, 2046573861616549, 69523263984968669, 2361744412174224005, 80229786688466775389, 2725451003353980465829, 92585104325258634975005, 3145168096067610728884229
Offset: 0
-
a[n_] := Fibonacci[5*n, 2]/Fibonacci[n, 2]; a[0] = 5; Array[a, 17, 0] (* Amiram Eldar, May 08 2025 *)
-
my(N=30, x='x+O('x^N)); Vec((5-116*x-522*x^2+348*x^3+29*x^4)/((1-x)*(1+6*x+x^2)*(1-34*x+x^2)))
Showing 1-3 of 3 results.