cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383752 Product of nonzero remainders n mod p, over all primes p < n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 6, 8, 3, 8, 10, 36, 24, 8, 30, 288, 420, 1920, 2268, 640, 270, 2880, 9240, 13824, 7560, 19200, 17820, 120960, 64064, 362880, 5054400, 1881600, 475200, 165888, 464100, 6386688, 4082400, 1228800, 2120580, 34836480, 23474880, 217728000
Offset: 1

Views

Author

DarĂ­o Clavijo, May 28 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A383752[n_] := Times @@ DeleteCases[Mod[n, Prime[Range[PrimePi[n - 2]]]], 0];
    Array[A383752, 50] (* Paolo Xausa, Jun 05 2025 *)
  • PARI
    a(n) = vecprod(select(x->(x!=0), apply(lift, apply(x->Mod(n, x), primes([2,n-1]))))); \\ Michel Marcus, May 28 2025
  • Python
    from sympy import primerange
    def a(n):
        s = 1
        for p in primerange(0, n):
            if p > (n >> 1): s *= (n-p)
            elif (x:= n % p) > 0: s*= x
        return s
    print([a(n) for n in range(1,41)])
    

Formula

a(p) = A102647(p) if p prime.