cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A384243 a(n) = 2^(n-6)*n*(n^3 - 6*n^2 + 19*n - 14).

Original entry on oeis.org

0, 0, 1, 6, 30, 140, 600, 2352, 8512, 28800, 92160, 281600, 827904, 2356224, 6522880, 17633280, 46694400, 121438208, 310837248, 784465920, 1954938880, 4816896000, 11747721216, 28386000896, 68010639360, 161690419200, 381681664000, 895098028032, 2086448136192, 4836200284160
Offset: 0

Views

Author

Enrique Navarrete, May 23 2025

Keywords

Comments

a(n) is the number of strings of length n defined on {0, 1, 2, 3} that have exactly two 2's, zero or two 3's, and have no restriction on the number of 0's and 1's.

Examples

			a(4) = 30 since the strings are the 6 permutations of 2233, the 6 permutations of 1122, the 6 permutations of 0022, and the 12 permutations of 0122.
		

Crossrefs

Programs

  • Mathematica
    A384243[n_] := 2^(n-6)*n*(n-1)*(n*(n-5)+14); Array[A384243, 30, 0] (* or *)
    LinearRecurrence[{10, -40, 80, -80, 32}, {0, 0, 1, 6, 30}, 30] (* Paolo Xausa, May 27 2025 *)

Formula

E.g.f.: exp(2*x)*(x^2/2 + x^4/4).
G.f.: x^2*(1 - 4*x + 10*x^2)/(1 - 2*x)^5. - Stefano Spezia, May 23 2025

A384506 a(n) = 2^(n-7)*(n^4 - 6*n^3 + 59*n^2 - 54*n)/3.

Original entry on oeis.org

0, 0, 1, 6, 25, 90, 300, 952, 2912, 8640, 24960, 70400, 194304, 525824, 1397760, 3655680, 9420800, 23953408, 60162048, 149422080, 367329280, 894566400, 2159804416, 5173149696, 12299796480, 29045555200, 68157440000, 158997676032, 368880648192, 851443712000, 1955887841280
Offset: 0

Views

Author

Enrique Navarrete, May 31 2025

Keywords

Comments

a(n) is the number of strings of length n defined on {0, 1, 2, 3} that have exactly two 2's and no 3's or exactly four 3's and no 2's.

Examples

			a(4) = 25 since the strings are the 6 permutations of 2200, the 6 permutations of 2211, the 12 permutations of 2201, and 3333.
a(6) = 300 since the strings are (number of permutations in parentheses): 220000 (15), 220001 (60), 220011 (90), 220111 (60), 221111 (15), 333300 (15), 333301 (30), and 333311 (15). Note that the 15 permutations of the string 223333 are excluded.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x^2*(1 - 4*x + 5*x^2)/(1 - 2*x)^5,{x,0,30}],x] (* or *) LinearRecurrence[{10,-40,80,-80,32},{0,0,1,6,25},31] (* James C. McMahon, Jun 04 2025 *)

Formula

E.g.f.: exp(2*x)*(x^2/2 + x^4/24).
G.f.: x^2*(1 - 4*x + 5*x^2)/(1 - 2*x)^5. - Stefano Spezia, Jun 01 2025

A383868 a(n) = 2^(n-3)*(3*binomial(n,4) + 4*binomial(n,2) + 8).

Original entry on oeis.org

1, 2, 6, 20, 70, 252, 904, 3152, 10560, 33920, 104704, 311808, 899584, 2524160, 6912000, 18526208, 48726016, 126025728, 321126400, 807403520, 2005794816, 4929093632, 11994136576, 28924968960, 69185044480, 164240556032, 387201368064, 907009851392, 2112083722240
Offset: 0

Views

Author

Enrique Navarrete, May 12 2025

Keywords

Comments

a(n) is the number of strings of length n defined on {0,1,2,3} that contain zero or two 2s, zero or two 3s, and have no restriction on the number of 0s and 1s.

Examples

			a(2) = 6 since the strings are 01, 10, 00, 11, 22, and 33.
		

Crossrefs

Cf. A383778.

Programs

  • Mathematica
    a[n_] := 2^(n-3) * (3*Binomial[n, 4] + 4*Binomial[n, 2] + 8); Array[a, 30, 0] (* Amiram Eldar, May 13 2025 *)

Formula

E.g.f.: exp(2*x)*(1+x^2/2)^2.
G.f.: (1 - 8*x + 26*x^2 - 40*x^3 + 30*x^4)/(1 - 2*x)^5. - Stefano Spezia, May 13 2025
Showing 1-3 of 3 results.