A383809 Consecutive states of a linear congruential pseudo-random number generator for Lisp 1985 when started at 1.
1, 17, 38, 144, 189, 201, 154, 108, 79, 88, 241, 81, 122, 66, 118, 249, 217, 175, 214, 124, 100, 194, 35, 93, 75, 20, 89, 7, 119, 15, 4, 68, 152, 74, 3, 51, 114, 181, 65, 101, 211, 73, 237, 13, 221, 243, 115, 198, 103, 245, 149, 23, 140, 121, 49, 80, 105, 28
Offset: 1
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..125
- Richard P. Gabriel, Performance and Evaluation of Lisp Systems, MIT, 1985 (see p. 140).
- Stephen K. Park and Keith W. Miller, Random number generators: good ones are hard to find, Communications of the ACM, Vol 31, 10 (1988), 192-201.
- Index entries for sequences related to pseudo-random numbers.
- Index entries for linear recurrences with constant coefficients, order 125.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, irem(17*a(n-1), 251)) end: seq(a(n), n=1..58); # Alois P. Heinz, May 21 2025
-
Mathematica
NestList[Mod[17*#, 251] &, 1, 100] (* Paolo Xausa, May 21 2025 *)
Formula
a(n) = 17 * a(n-1) mod 251.
Comments