A383817 Decimal expansion of -Sum_{k>=1} mu(3*k)/(3^k - 1), where mu is the Möbius function A008683.
3, 7, 0, 4, 2, 1, 1, 7, 5, 6, 3, 3, 9, 2, 6, 7, 9, 8, 4, 9, 5, 7, 4, 3, 1, 8, 9, 4, 1, 1, 2, 6, 8, 1, 0, 0, 9, 7, 8, 1, 2, 8, 5, 9, 6, 7, 8, 4, 6, 0, 5, 3, 3, 4, 8, 1, 5, 3, 8, 8, 6, 0, 2, 7, 8, 1, 5, 4, 3, 8, 6, 7, 8, 3, 1, 5, 7, 3, 5, 1, 5, 6, 5, 6, 0, 1, 0
Offset: 0
Examples
0.3704211756339267984957431894112681...
Links
- Maxie Dion Schmidt, A catalog of interesting and useful Lambert series identities, arXiv:2004.02976 [math.NT], 2004(2020), page 9, eq. (3.1h), put q = 1/3 and alpha = 3. - _Amiram Eldar_, May 11 2025
Programs
-
PARI
sum(k=1,logint(2^getlocalbitprec(),3)+1,moebius(3*k)/(3.^k - 1),0.) \\ Bill Allombert
Formula
Equals Sum_{k>=0} 1/3^(3^k) = Sum_{k>=0} 1/A055777(k). - Amiram Eldar, May 11 2025
Comments