cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A055777 a(n) = 3^(3^n).

Original entry on oeis.org

3, 27, 19683, 7625597484987, 443426488243037769948249630619149892803
Offset: 0

Views

Author

Henry Bottomley, Jul 12 2000

Keywords

Comments

Next term is too big to include.
a(n+1) = a(n) written in base 3 and read as if in base 27 (and recorded in base 10).
Number of distinct n-ary operators in a ternary logic. - Ross Drewe, Feb 13 2008
The next term has 116 digits. - Harvey P. Dale, Mar 28 2019

Crossrefs

Programs

Formula

a(n) = a(n-1)^3.
Sum_{n>=0} 1/a(n) = A383817. - Amiram Eldar, May 16 2025

A383819 Decimal expansion of -Sum_{k>=1} mu(3*k)/(27^k + 1), where mu is the Möbius function.

Original entry on oeis.org

0, 3, 4, 3, 4, 4, 3, 5, 2, 9, 1, 3, 2, 7, 8, 1, 7, 5, 2, 8, 8, 8, 2, 7, 5, 2, 9, 0, 3, 4, 4, 9, 6, 9, 3, 1, 4, 1, 9, 9, 4, 4, 2, 0, 3, 2, 9, 7, 5, 2, 1, 0, 4, 9, 5, 4, 4, 8, 0, 3, 9, 8, 6, 3, 4, 3, 9, 1, 5, 3, 9, 1, 9, 4, 8, 1, 0, 2, 0, 7, 3, 3, 9, 5, 4, 4, 6, 3, 0, 0, 2, 7, 4, 5, 6, 4, 8, 7, 7, 4, 3, 0, 1, 7, 5, 0, 4, 4, 1, 8, 2
Offset: 0

Views

Author

Artur Jasinski, May 16 2025

Keywords

Examples

			0.034344352913278175288827529...
		

Crossrefs

Programs

  • Mathematica
    Join[{0}, RealDigits[NSum[1/3^(3^k) - 2/3^(2*3^k), {k, 1, Infinity}, WorkingPrecision -> 120]][[1]]] (* Amiram Eldar, May 16 2025 *)
  • PARI
    -sum(k=1,logint(2^getlocalbitprec(),3)+1,moebius(3*k)/(27.^k + 1),0.) \\ Bill Allombert

Formula

Equals Sum_{k>=1} (1/3^(3^k) - 2/3^(2*3^k)). - Amiram Eldar, May 16 2025

A383820 Decimal expansion of Sum_{k>=1} 1/3^(3^k).

Original entry on oeis.org

0, 3, 7, 0, 8, 7, 8, 4, 2, 3, 0, 0, 5, 9, 3, 4, 6, 5, 1, 6, 2, 4, 0, 9, 8, 5, 6, 0, 7, 7, 9, 3, 4, 7, 6, 7, 6, 4, 4, 7, 9, 5, 2, 6, 3, 4, 5, 1, 2, 7, 2, 0, 0, 1, 4, 8, 2, 0, 5, 5, 2, 6, 9, 4, 4, 8, 2, 1, 0, 5, 3, 4, 4, 9, 8, 2, 4, 0, 1, 8, 2, 3, 2, 2, 6, 7, 7, 2, 3, 9, 2, 4, 3, 1, 0, 0, 7, 9, 4, 9, 4, 8, 2, 3, 8, 5
Offset: 0

Views

Author

Artur Jasinski, May 16 2025

Keywords

Comments

The real root of the cubic polynomial 243*x^3 - 27*x^2 - 242*x + 9 matches this constant to 20 decimal places.

Examples

			0.037087842300593465162409856...
		

Crossrefs

Programs

  • Mathematica
    sum = Sum[1/3^(3^n), {n, 1, Infinity}]; nsum = N[sum, 110]; RealDigits[nsum, 10, 105][[1]]
  • PARI
    -sum(k=1,logint(2^getlocalbitprec(),3)+1,moebius(3*k)/(27.^k - 1),0.) \\ Bill Allombert
    
  • PARI
    suminf(k=1, 1/3^(3^k)) \\ Amiram Eldar, May 16 2025

Formula

Equals -Sum_{k>=1} mu(3*k)/(27*k-1), where mu is the Möbius function A008683.
Equals A383817 - 1/3.
Showing 1-3 of 3 results.