A383818 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - k*x) * Product_{j=0..k-1} (1 + j*x)/(1 - j*x).
1, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 9, 10, 1, 0, 1, 16, 45, 22, 1, 0, 1, 25, 136, 177, 46, 1, 0, 1, 36, 325, 856, 621, 94, 1, 0, 1, 49, 666, 3025, 4576, 2049, 190, 1, 0, 1, 64, 1225, 8646, 23125, 22216, 6525, 382, 1, 0, 1, 81, 2080, 21217, 90126, 156145, 101536, 20337, 766, 1, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 1, 4, 9, 16, 25, ... 0, 1, 10, 45, 136, 325, ... 0, 1, 22, 177, 856, 3025, ... 0, 1, 46, 621, 4576, 23125, ... 0, 1, 94, 2049, 22216, 156145, ...
Crossrefs
Programs
-
PARI
a(n, k) = sum(j=0, k, abs(stirling(k, j, 1))*stirling(j+n, k, 2));
Formula
A(n,k) = Sum_{j=0..k} |Stirling1(k,j)| * Stirling2(j+n,k).