cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A383817 Decimal expansion of -Sum_{k>=1} mu(3*k)/(3^k - 1), where mu is the Möbius function A008683.

Original entry on oeis.org

3, 7, 0, 4, 2, 1, 1, 7, 5, 6, 3, 3, 9, 2, 6, 7, 9, 8, 4, 9, 5, 7, 4, 3, 1, 8, 9, 4, 1, 1, 2, 6, 8, 1, 0, 0, 9, 7, 8, 1, 2, 8, 5, 9, 6, 7, 8, 4, 6, 0, 5, 3, 3, 4, 8, 1, 5, 3, 8, 8, 6, 0, 2, 7, 8, 1, 5, 4, 3, 8, 6, 7, 8, 3, 1, 5, 7, 3, 5, 1, 5, 6, 5, 6, 0, 1, 0
Offset: 0

Views

Author

Artur Jasinski, May 11 2025

Keywords

Comments

The real root of the cubic polynomial 729*x^3 - 810*x^2 - 429*x + 233 matches this constant to 20 decimal places.

Examples

			0.3704211756339267984957431894112681...
		

Crossrefs

Programs

  • PARI
    sum(k=1,logint(2^getlocalbitprec(),3)+1,moebius(3*k)/(3.^k - 1),0.) \\ Bill Allombert

Formula

Equals Sum_{k>=0} 1/3^(3^k) = Sum_{k>=0} 1/A055777(k). - Amiram Eldar, May 11 2025

A383900 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of Product_{j=0..k} (1 + j*x)/(1 - j*x).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 2, 0, 1, 12, 18, 2, 0, 1, 20, 72, 42, 2, 0, 1, 30, 200, 312, 90, 2, 0, 1, 42, 450, 1400, 1152, 186, 2, 0, 1, 56, 882, 4650, 8000, 3912, 378, 2, 0, 1, 72, 1568, 12642, 38250, 40520, 12672, 762, 2, 0, 1, 90, 2592, 29792, 142002, 271770, 190400, 39912, 1530, 2, 0
Offset: 0

Views

Author

Seiichi Manyama, May 14 2025

Keywords

Examples

			Square array begins:
  1, 1,   1,    1,     1,      1, ...
  0, 2,   6,   12,    20,     30, ...
  0, 2,  18,   72,   200,    450, ...
  0, 2,  42,  312,  1400,   4650, ...
  0, 2,  90, 1152,  8000,  38250, ...
  0, 2, 186, 3912, 40520, 271770, ...
		

Crossrefs

Columns k=0..4 give A000007, A040000, A068293(n+1), A383910, A383911.
Main diagonal gives A350366.
A(n,n-1) gives A383767.

Programs

  • PARI
    a(n, k) = sum(j=0, k, abs(stirling(k+1, j+1, 1))*stirling(j+n, k, 2));

Formula

A(n,k) = Sum_{j=0..k} |Stirling1(k+1,j+1)| * Stirling2(j+n,k).

A383912 Expansion of (1+x) * (1+2*x)/((1-x) * (1-2*x) * (1-3*x)).

Original entry on oeis.org

1, 9, 45, 177, 621, 2049, 6525, 20337, 62541, 190689, 578205, 1746897, 5265261, 15844929, 47633085, 143095857, 429680781, 1289828769, 3871059165, 11616323217, 34855261101, 104578366209, 313760264445, 941331124977, 2824094038221, 8472483441249, 25417852976925
Offset: 0

Views

Author

Seiichi Manyama, May 15 2025

Keywords

Crossrefs

Column k=3 of A383818.
Cf. A383910.

Programs

  • PARI
    a(n) = 10*3^n-3*2^(n+2)+3;

Formula

a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3).
a(n) = Sum_{k=0..3} |Stirling1(3,k)| * Stirling2(k+n,3).
a(n) = 10*3^n - 3*2^(n+2) + 3.

A383913 Expansion of (1+x) * (1+2*x) * (1+3*x)/((1-x) * (1-2*x) * (1-3*x) * (1-4*x)).

Original entry on oeis.org

1, 16, 136, 856, 4576, 22216, 101536, 446056, 1907776, 8009416, 33187936, 136233256, 555438976, 2253396616, 9108754336, 36721012456, 147743018176, 593550943816, 2381944320736, 9551006783656, 38273731365376, 153304069611016, 613843773807136, 2457257707146856
Offset: 0

Views

Author

Seiichi Manyama, May 15 2025

Keywords

Crossrefs

Column k=4 of A383818.
Cf. A383911.

Programs

  • PARI
    a(n) = 35*4^n-20*3^(n+1)+15*2^(n+1)-4;

Formula

a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4).
a(n) = Sum_{k=0..4} |Stirling1(4,k)| * Stirling2(k+n,4).
a(n) = 35*4^n - 20*3^(n+1) + 15*2^(n+1) - 4.
Showing 1-4 of 4 results.