cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A377011 a(n) = Sum_{k=0..n} 3^k * binomial(2*n+1,n-k).

Original entry on oeis.org

1, 6, 34, 188, 1026, 5556, 29940, 160824, 862018, 4613636, 24667644, 131795912, 703812916, 3757135752, 20051429544, 106992663408, 570827898306, 3045193326372, 16244056119084, 86646747723048, 462161936699196, 2465043081687192, 13147597801986264, 70123266087502608
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^k * Binomial(2*n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
  • Mathematica
    Table[Sum[3^k * Binomial[2*n+1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*binomial(2*n+1, n-k));
    

Formula

a(n) = [x^n] 1/((1-4*x) * (1-x)^(n+1)).
a(n) = Sum_{k=0..n} 4^k * (-3)^(n-k) * binomial(2*n+1,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} 4^k * binomial(2*n-k,n-k).
G.f.: 1/( sqrt(1-4*x) * (2*sqrt(1-4*x)-1) ).
a(n) ~ 2^(4*n+2) / 3^(n+1). - Vaclav Kotesovec, Aug 20 2025
D-finite with recurrence 3*n*a(n) +2*(-14*n+3)*a(n-1) +32*(2*n-1)*a(n-2)=0. - R. J. Mathar, Aug 21 2025

A386942 a(n) = Sum_{k=0..n} (2*k+1) * binomial(2*k,k) * binomial(2*n-k,n-k).

Original entry on oeis.org

1, 8, 54, 340, 2060, 12180, 70812, 406656, 2313630, 13067340, 73372728, 410013864, 2282066332, 12658839200, 70017730680, 386314361808, 2126818591932, 11686657363236, 64108376373700, 351142219736000, 1920711937207140, 10493241496749000, 57263080117042800
Offset: 0

Views

Author

Seiichi Manyama, Aug 10 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(2*k+1) * Binomial (2*k, k) *Binomial(2*n-k, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Sep 03 2025
  • Mathematica
    Table[Sum[(2*k+1) *Binomial[2*k,k]* Binomial[2*n-k,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Sep 03 2025 *)
  • PARI
    a(n) = sum(k=0, n, (2*k+1)*binomial(2*k, k)*binomial(2*n-k, n-k));
    

Formula

a(n) = [x^n] 1/((1-4*x)^(3/2) * (1-x)^(n+1)).
G.f.: 1/sqrt( (1-4*x) * (2*sqrt(1-4*x)-1)^3 ).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(2*n+3/2,k) * binomial(n-k+1/2,n-k) = Sum_{k=0..n} (2*k+1) * (3/4)^k * binomial(2*k,k) * binomial(2*n+3/2,n-k).
a(n) = Sum_{k=0..n} 4^k * (-3)^(n-k) * binomial(2*n+3/2,k) * binomial(2*n-k,n-k).

A386986 a(n) = Sum_{k=0..n} (k+1) * 8^k * binomial(2*n+2,n-k).

Original entry on oeis.org

1, 20, 303, 4088, 51730, 628488, 7423899, 85904688, 978506478, 11008191800, 122603713078, 1354213651728, 14854030654372, 161966063719712, 1757042561230515, 18976059641899872, 204140891541240918, 2188510439907779064, 23389705325379996834, 249285017279237071440
Offset: 0

Views

Author

Seiichi Manyama, Aug 12 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(k+1)*8^k * Binomial(2*n+2, n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 14 2025
  • Mathematica
    Table[Sum[(k+1)* 8^k*Binomial[2*n+2,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 14 2025 *)
  • PARI
    a(n) = sum(k=0, n, (k+1)*8^k*binomial(2*n+2, n-k));
    

Formula

a(n) = [x^n] 1/((1-9*x)^2 * (1-x)^(n+1)).
a(n) = Sum_{k=0..n} 9^k * (-8)^(n-k) * binomial(2*n+2,k) * binomial(2*n-k,n-k).
a(n) = Sum_{k=0..n} (k+1) * 9^k * binomial(2*n-k,n-k).
G.f.: 4/( sqrt(1-4*x) * (9*sqrt(1-4*x)-7)^2 ).
a(n) ~ 7 * n * 3^(4*n+2) / 2^(3*n+6). - Vaclav Kotesovec, Aug 12 2025
D-finite with recurrence 520*n*a(n) +(-8641*n-1633)*a(n-1) +486*(81*n-32)*a(n-2) +26244*(-2*n+3)*a(n-3)=0. - R. J. Mathar, Aug 19 2025
Showing 1-3 of 3 results.