cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A383834 Sum of the legs of the unique primitive Pythagorean triple whose inradius is A000217(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

1, 7, 31, 97, 241, 511, 967, 1681, 2737, 4231, 6271, 8977, 12481, 16927, 22471, 29281, 37537, 47431, 59167, 72961, 89041, 107647, 129031, 153457, 181201, 212551, 247807, 287281, 331297, 380191, 434311, 494017, 559681, 631687, 710431, 796321, 889777, 991231, 1101127, 1219921, 1348081
Offset: 0

Views

Author

Keywords

Examples

			For n=1, the short leg is A002061(1) = 3 and the long leg is A212135(2) = 4 so the sum of the legs is then a(1) = 3 + 4 = 7.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.

Crossrefs

Programs

  • Mathematica
    a=Table[(n(n+1))/2,{n,0,40}];Apply[Join,Map[{2#^2+4#+1}&,a]]

Formula

a(n) = 2*(A000217(n))^2 + 4*A000217(n) + 1.
a(n) = 6*A006007(n) + 1

A336535 a(n) = (m(n)^2 + 3)*(m(n)^2 + 7)/32, where m(n) = 2*n - 1.

Original entry on oeis.org

1, 6, 28, 91, 231, 496, 946, 1653, 2701, 4186, 6216, 8911, 12403, 16836, 22366, 29161, 37401, 47278, 58996, 72771, 88831, 107416, 128778, 153181, 180901, 212226, 247456, 286903, 330891, 379756, 433846, 493521, 559153, 631126, 709836, 795691, 889111, 990528, 1100386, 1219141, 1347261, 1485226, 1633528, 1792671
Offset: 1

Views

Author

Jeff Brown, Jul 24 2020

Keywords

Comments

For m(n) = 3,5,11, and 181, the perfect numbers (A000396), 6, 28, 496, and 33550336 are produced, respectively. 3,5,11, and 181 are the numbers m(n) such that (m(n)^2+7) is a power of 2. cf A038198.
The unique primitive Pythagorean triple whose inradius T(n) and its long leg and hypotenuse are consecutive natural numbers is (2*T(n)+1, 2*T(n)*(T(n)+1), 2*T(n)*(T(n)+1)+1) and its semiperimeter is (T(n)+1)*(2*T(n)+1) where T(n) = A000217(n). - Miguel-Ángel Pérez García-Ortega, May 16 2025

Examples

			m(2) = 2*2-1 = 3 and (3^2+3)*(3^2+7)/32 = 6, so 6 is in the sequence.
		

References

  • David M. Burton, Elementary Number Theory, McGraw-Hill (2011), 25.

Crossrefs

Programs

Formula

From Stefano Spezia, Jul 25 2020: (Start)
O.g.f.: x*(1 + x + 8*x^2 + x^3 + x^4)/(1 - x)^5.
a(n) = (1 - n + n^2)*(2 - n + n^2)/2.
a(n) = A002061(n)*A014206(n-1)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5. (End)
a(n) = (A000217(n-1)+1)*(2*A000217(n-1)+1). - Miguel-Ángel Pérez García-Ortega, May 16 2025

A384566 Area of the unique primitive Pythagorean triple whose inradius is A002378(n) and such that its long leg and its hypotenuse are consecutive natural numbers.

Original entry on oeis.org

0, 30, 546, 3900, 17220, 56730, 153510, 360696, 762120, 1482390, 2698410, 4652340, 7665996, 12156690, 18654510, 27821040, 40469520, 57586446, 80354610, 110177580, 148705620, 197863050, 259877046, 337307880, 433080600, 550518150, 693375930, 865877796, 1072753500, 1319277570, 1611309630
Offset: 0

Views

Author

Keywords

Comments

a(n) is multiple of 6 for all n.

Examples

			For n=1, the short leg is A384288(1,1) = 5 and the long leg is A384288(1,2) = 12 so the area is then a(1) = (5 * 12 )/2 = 30.
		

Crossrefs

Programs

  • Mathematica
    a=Table[(n(n+1)),{n,0,30}];Apply[Join,Map[{#(#+1)(2#+1)}&,a]]

Formula

a(n) = (A384288(n,1) * A384288(n,2))/2.
a(n) = A002378(n)*(A002378(n) + 1)*(2*A002378(n) + 1).
Showing 1-3 of 3 results.