A383872 Nonprime numbers whose sum of proper divisors is a power of 4.
9, 12, 26, 56, 76, 122, 332, 992, 2042, 3344, 4336, 8186, 16256, 32762, 227744, 266176, 269072, 299576, 856544, 2097146, 5385812, 8388602, 16580864, 17895664, 19173944, 33554426, 61008020, 67100672, 201931760, 1074789376, 1108378592, 17179738112, 62472251540, 68700578816
Offset: 1
Keywords
Examples
12 is not prime; 12 has proper divisors 1, 2, 3, 4, and 6, with a sum of 16. This is a square number as well as a power of 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..43 (calculated from the b-file at A279731)
Programs
-
Maple
filter:= proc(n) local s; s:= numtheory:-sigma(n)-n; s > 1 and s = 4^padic:-ordp(s,4) end proc: select(filter, [$4..10^7]); # Robert Israel, May 13 2025
-
Mathematica
Zweierpotenzen = {}; Quadratzahlen = {}; Beides = {}; For[k = 1, k <= 50000000, k++, SumET = Total[Divisors[k]] - k; If[IntegerQ[Log[2, SumET]] && PrimeQ[k] == False, AppendTo[Zweierpotenzen, k]]; If[IntegerQ[Sqrt[SumET]] && PrimeQ[k] == False, AppendTo[Quadratzahlen, k ]]]; Beides = Intersection[Zweierpotenzen, Quadratzahlen]; Beides
-
PARI
isok(k) = if (!ispseudoprime(k), my(s=sigma(k)-k, z); issquare(s) && (ispower(s, , &z) && (z==2))); \\ Michel Marcus, May 13 2025
Extensions
a(27)-a(29) from Michel Marcus, May 13 2025
a(30)-a(34) from Amiram Eldar, May 13 2025
Comments