cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383903 Decimal expansion of Meissel Prime theta function at x = 2 : Sum_{p prime} 1/exp(2*p).

Original entry on oeis.org

0, 2, 0, 8, 4, 0, 6, 2, 2, 8, 0, 7, 9, 3, 9, 7, 7, 0, 7, 6, 1, 4, 2, 8, 7, 9, 5, 4, 3, 4, 7, 6, 4, 5, 3, 5, 8, 8, 8, 7, 2, 8, 1, 6, 0, 4, 6, 1, 4, 5, 6, 8, 0, 0, 5, 8, 1, 8, 4, 9, 2, 6, 5, 4, 3, 8, 2, 4, 6, 1, 9, 8, 8, 8, 8, 3, 7, 8, 1, 5, 7, 3, 2, 2, 4, 9, 2, 0, 9, 3, 4, 7, 2, 3, 5, 9, 4, 8, 9, 7, 5, 7, 2, 4, 1, 4, 8, 7, 4, 2, 1
Offset: 0

Views

Author

Artur Jasinski, Aug 07 2025

Keywords

Comments

Meissel Prime theta function is defined : Sum_{p prime} 1/exp(x*p).

Examples

			0.02084062280793977076142879543476453588872816...
		

References

  • Ernst Meissel, Bericht über die Provinzial-Gewerbe-Schule zu Iserlohn. Notiz No. 38 pp.1-17 (manuscript).

Crossrefs

Programs

  • Maple
    evalf[140](sum(1/exp(2*ithprime(i)), i=1..infinity));  # Alois P. Heinz, Aug 07 2025
  • Mathematica
    sum = 0; Do[sum = sum + N[1/E^(2 Prime[n]), 110], {n, 1, 56}];
    RealDigits[sum, 10, 105][[1]]
  • PARI
    sumpos(k = 1, exp(-2*prime(k))) \\ Amiram Eldar, Aug 08 2025