cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383949 Expansion of 1/sqrt((1-x)^3 * (1-5*x)).

Original entry on oeis.org

1, 4, 15, 60, 255, 1128, 5117, 23600, 110115, 518220, 2455101, 11693124, 55934385, 268535400, 1293178275, 6243968880, 30217425795, 146529719100, 711810105725, 3463284659300, 16874328961245, 82322471522280, 402079323279975, 1965900162652800, 9621179345962525, 47127880914834148
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/Sqrt((1- x)^3 * (1-5*x)); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 27 2025
  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-x)^3*(1-5*x)],{x,0,33}],x] (* Vincenzo Librandi, Aug 27 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-x)^3*(1-5*x)))
    

Formula

n*a(n) = (6*n-2)*a(n-1) - 5*n*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 5^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+1,n-k).
a(n) = Sum_{k=0..n} binomial(2*k,k) * binomial(n+1,n-k).