cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A384487 Numbers k such that there exist two integers 0

Original entry on oeis.org

396, 504, 600, 756, 840, 924, 1056, 1080, 1140, 1170, 1260, 1320, 1428, 1440, 1488, 1512, 1540, 1560, 1596, 1638, 1650, 1656, 1680, 1704, 1710, 1740, 1800, 1820, 1840, 1848, 1872, 1932, 1980, 2016, 2040, 2100, 2160, 2184, 2232, 2244, 2256, 2280, 2340, 2352, 2380, 2400, 2430, 2436, 2448, 2460, 2484
Offset: 1

Views

Author

S. I. Dimitrov, Jun 01 2025

Keywords

Comments

The numbers i, j and k form a WHM(1)-amicable triple (WHM = weighted harmonic mean). See Dimitrov link.

Examples

			504 is a term because (72, 360, 504) is a triple with 72/sigma(72) + 360/sigma(360) + 504/sigma(504) = 1.
420 is not a term because the corresponding triple is (84, 420, 420).
		

Crossrefs

Programs

  • Maple
    S:= {}: S2:= {}: R:= NULL: count:= 0:
    for k from 1 while count < 100 do
      v:= k/numtheory:-sigma(k);
      if member(1-v,S2) then
        R:= R, k; count:= count+1;
     fi;
      S2:= S2 union map(t -> `if`(t+v<1,t+v,NULL),S);
      S:= S union {v};
    od:
    R; # Robert Israel, Jul 01 2025
  • PARI
    isok(k) = for (i=1, k-1, for (j=i+1, k-1, if (i/sigma(i) + j/sigma(j) + k/sigma(k) == 1, /* print([i,j,k]); */ return(1)););); \\ Michel Marcus, Jun 02 2025

Extensions

More terms from Michel Marcus, Jun 02 2025

A384814 Integers k such that there exists an integer 0

Original entry on oeis.org

28, 56, 66, 88, 90, 114, 132, 174, 220, 234, 238, 246, 284, 306, 308, 312, 340, 348, 356, 496, 532, 534, 552, 618, 620, 654, 668, 728, 752, 760, 786, 812, 856, 963, 990, 992, 996, 1052, 1092, 1148, 1180, 1196, 1210, 1220, 1232, 1244, 1288, 1320, 1326, 1364, 1372, 1474, 1494, 1580
Offset: 1

Views

Author

S. I. Dimitrov, Jun 10 2025

Keywords

Comments

The numbers m and k form a HM(1,2)-amicable pair (HM = harmonic mean). See Dimitrov link. An amicable pair forms a HM(1,2)-amicable pair, so the larger member of an amicable pair A002046 is a term of this sequence.

Examples

			(20, 28) is such a pair because (1/sigma(20) + 1/sigma(28))*(20+28) = 2.
		

Crossrefs

Programs

  • Maple
    S:= map(numtheory:-sigma,[$1..3000]):
    filter:= proc(k)
       ormap(m -> (1/S[m] + 1/S[k])*(m+k) = 2, [$1..k-1])
    end proc:
    select(filter, [$1..3000]); # Robert Israel, Jul 25 2025
  • PARI
    isok(k) = for(m=1, k-1, if ((1/sigma(m) + 1/sigma(k))*(m+k) == 2, return(1))); \\ Michel Marcus, Jun 10 2025
Showing 1-2 of 2 results.