A384000 Smallest number k with n distinct prime factors such that A010846(k) = A024718(n) (a tight lower bound), or -1 if such k does not exist.
1, 2, 6, 1001, 268801, 3433936673, 2603508937756211
Offset: 0
Examples
Table of a(n), n = 0..6, showing prime decomposition and cardinality of row a(n) of A162306, c(n) = A010846(a(n)) = A024718(n). n a(n) c(n) prime factors of a(n) a(n) ---------------------------------------------------------------------- 0 1 1 - 1 2 2 2 A000040(1) 2 6 5 2, 3 A138109(1) 3 1001 15 7, 11, 13 A383177(1) 4 268801 50 13, 23, 29, 31 A383178(2) 5 3433936673 176 41, 83, 97, 101, 103 A383179(209) 6 2603508937756211 638 163, 373, 439, 457, 461, 463 Tables of terms m in r(a(n)) = row a(n) of A162306, writing instead only exponents i of prime power factors p^i | m for each p | a(n), written in order of the prime base: For n = 2, i.e., squarefree semiprime k in A138109 (that achieves the lower bound), we have the following ordered exponent combinations in a rank-2 table: 00 10 20 01 11 Thus row 6 of A162306 has the following elements: 1 2 4 3 6 For n = 3, i.e., sphenic k in A383177 (that achieves the lower bound), we have the following ordered exponent combinations in a rank-3 table: 000 100 200 300 001 101 201 002 010 110 210 011 111 020 120 Thus row 1001 of A162306 has the following elements: 1 7 49 343 13 91 637 169 11 77 539 141 1001 121 857
Comments