cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384060 a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^4.

Original entry on oeis.org

1, 4, 82, 3024, 162154, 11438280, 1001454024, 104777127616, 12755141675754, 1771354690734420, 276386332002204450, 47870892086756660064, 9113932961179205496744, 1891845220489637114281216, 425240943851497448491619600, 102899751348092720847554016000
Offset: 0

Views

Author

Vaclav Kotesovec, May 18 2025

Keywords

Comments

In general, for m>=1, [x^n] Product_{k=0..n} 1/(1 - k*x)^m ~ (m+1)^((m+1)*n + (m-1)/2) * n^(n - 1/2) / (sqrt(2*Pi*(1-w)) * exp(n) * (m+1-m*w)^n * m^(m*(n + 1/2)) * w^(m*n + (m-1)/2)), where w = -LambertW(-(m+1)*exp(-(m+1)/m)/m).
The general formula is valid even for m=n, where after modifications we get the formula for A351508.

Crossrefs

Cf. A007820 (m=1), A350376 (m=2), A383862 (m=3), A351508 (m=n).
Cf. A384031.

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1-k*x)^4, {k, 1, n}], {x, 0, n}], {n, 0, 15}]

Formula

a(n) = Sum_{i, j, k, l>=0 and i+j+k+l=n} Stirling2(i+n,n) * Stirling2(j+n,n) * Stirling2(k+n,n) * Stirling2(l+n,n). - Seiichi Manyama, May 18 2025
a(n) ~ 5^(5*n + 3/2) * n^(n - 1/2) / (sqrt(Pi*(1-w)) * 2^(8*n + 9/2) * exp(n) * (5 - 4*w)^n * w^(4*n + 3/2)), where w = -LambertW(-5*exp(-5/4)/4) = 0.7857872456211833502961937693700363613539172187... - Vaclav Kotesovec, May 18 2025