A384119 Array read by antidiagonals: T(n,m) is the number of minimum dominating sets in the n X m rook graph K_n X K_m.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 4, 9, 9, 4, 1, 1, 5, 16, 48, 16, 5, 1, 1, 6, 25, 64, 64, 25, 6, 1, 1, 7, 36, 125, 488, 125, 36, 7, 1, 1, 8, 49, 216, 625, 625, 216, 49, 8, 1, 1, 9, 64, 343, 1296, 6130, 1296, 343, 64, 9, 1, 1, 10, 81, 512, 2401, 7776, 7776, 2401, 512, 81, 10, 1
Offset: 0
Examples
Array begins: ======================================================= n\m | 0 1 2 3 4 5 6 7 8 ... ----+-------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 1 ... 1 | 1 1 2 3 4 5 6 7 8 ... 2 | 1 2 6 9 16 25 36 49 64 ... 3 | 1 3 9 48 64 125 216 343 512 ... 4 | 1 4 16 64 488 625 1296 2401 4096 ... 5 | 1 5 25 125 625 6130 7776 16807 32768 ... 6 | 1 6 36 216 1296 7776 92592 117649 262144 ... 7 | 1 7 49 343 2401 16807 117649 1642046 2097152 ... 8 | 1 8 64 512 4096 32768 262144 2097152 33514112 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
- Eric Weisstein's World of Mathematics, Minimum Dominating Set.
- Eric Weisstein's World of Mathematics, Rook Graph.
Programs
-
PARI
T(n,m) = {if(n<=m, m^n) + if(m<=n, n^m) - if(m==n, n!)}
Formula
T(n,m) = T(m,n).
T(n,m) = n^m for m < n.
Comments