cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384119 Array read by antidiagonals: T(n,m) is the number of minimum dominating sets in the n X m rook graph K_n X K_m.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 4, 9, 9, 4, 1, 1, 5, 16, 48, 16, 5, 1, 1, 6, 25, 64, 64, 25, 6, 1, 1, 7, 36, 125, 488, 125, 36, 7, 1, 1, 8, 49, 216, 625, 625, 216, 49, 8, 1, 1, 9, 64, 343, 1296, 6130, 1296, 343, 64, 9, 1, 1, 10, 81, 512, 2401, 7776, 7776, 2401, 512, 81, 10, 1
Offset: 0

Views

Author

Andrew Howroyd, May 20 2025

Keywords

Comments

For m <= n, the minimum size of a dominating set is m. When m < n, solutions have exactly one vertex in each column. In the special case of n = m, solutions either have exactly one vertex in each column or have exactly one vertex in each row.

Examples

			Array begins:
=======================================================
n\m | 0 1  2   3    4     5      6       7        8 ...
----+--------------------------------------------------
  0 | 1 1  1   1    1     1      1       1        1 ...
  1 | 1 1  2   3    4     5      6       7        8 ...
  2 | 1 2  6   9   16    25     36      49       64 ...
  3 | 1 3  9  48   64   125    216     343      512 ...
  4 | 1 4 16  64  488   625   1296    2401     4096 ...
  5 | 1 5 25 125  625  6130   7776   16807    32768 ...
  6 | 1 6 36 216 1296  7776  92592  117649   262144 ...
  7 | 1 7 49 343 2401 16807 117649 1642046  2097152 ...
  8 | 1 8 64 512 4096 32768 262144 2097152 33514112 ...
  ...
		

Crossrefs

Main diagonal is A248744.

Programs

  • PARI
    T(n,m) = {if(n<=m, m^n) + if(m<=n, n^m) - if(m==n, n!)}

Formula

T(n,m) = T(m,n).
T(n,m) = n^m for m < n.