A384122 Array read by antidiagonals: T(n,m) is the number of minimum dominating sets in the n X m rook complement graph.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 4, 48, 4, 1, 1, 1, 1, 5, 100, 100, 5, 1, 1, 1, 1, 6, 185, 240, 185, 6, 1, 1, 1, 1, 7, 306, 480, 480, 306, 7, 1, 1, 1, 1, 8, 469, 840, 1000, 840, 469, 8, 1, 1, 1, 1, 9, 680, 1344, 1800, 1800, 1344, 680, 9, 1, 1
Offset: 0
Examples
Array begins: =============================================== n\m | 0 1 2 3 4 5 6 7 8 ... ----+------------------------------------------ 0 | 1 1 1 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 1 1 1 ... 2 | 1 1 4 3 4 5 6 7 8 ... 3 | 1 1 3 48 100 185 306 469 680 ... 4 | 1 1 4 100 240 480 840 1344 2016 ... 5 | 1 1 5 185 480 1000 1800 2940 4480 ... 6 | 1 1 6 306 840 1800 3300 5460 8400 ... 7 | 1 1 7 469 1344 2940 5460 9114 14112 ... 8 | 1 1 8 680 2016 4480 8400 14112 21952 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
- Eric Weisstein's World of Mathematics, Minimum Dominating Set.
- Eric Weisstein's World of Mathematics, Rook Complement Graph.
Crossrefs
Programs
-
PARI
T(n,m) = if(n<=2||m<=2, if(n<=1||m<=1, 1, if(n==2,m)+if(m==2,n)), 4*binomial(n,2)*binomial(m,2) + 6*binomial(n,3)*binomial(m,3) + if(n==3,m) + if(m==3,n))
Formula
T(n,m) = 4*binomial(n,2)*binomial(m,2) + 6*binomial(n,3)*binomial(m,3) for n >= 4, m >= 4.
T(n,m) = T(m,n).
T(n,0) = T(n,1) = 1.
Comments