cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384147 Array A(n,k) = n*(A(n-1,k)+A(n-2,k)+...+A(n-k,k)), where A(n,k) = n if n <= k, read by antidiagonals with n >= 1 and k >= 1.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 8, 3, 4, 1, 20, 3, 4, 5, 1, 56, 27, 4, 5, 6, 1, 152, 99, 4, 5, 6, 7, 1, 416, 387, 64, 5, 6, 7, 8, 1, 1136, 1539, 304, 5, 6, 7, 8, 9, 1, 3104, 6075, 1504, 125, 6, 7, 8, 9, 10, 1, 8480, 24003, 7504, 725, 6, 7, 8, 9, 10, 11, 1, 23168, 94851, 37504, 4325, 216, 7, 8, 9, 10, 11, 12
Offset: 1

Views

Author

Jason Bard, May 25 2025

Keywords

Comments

Taking only the triangle where 1<=n<=k and reading by rows yields A002024.

Examples

			Top left corner of the array:
   1  1  1  1  1   1    1    1     1      1      1
   2  2  8 20 56 152  416 1136  3104   8480  23168
   3  3  3 27 99 387 1539 6075 24003  94851 374787
   4  4  4  4 64 304 1504 7504 37504 187264 935104
   5  5  5  5  5 125  725 4325 25925 155525 933125
   6  6  6  6  6   6  216 1476 10296  72036 504216
   7  7  7  7  7   7    7  343  2695  21511 172039
   8  8  8  8  8   8    8    8   512   4544  40832
   9  9  9  9  9   9    9    9     9    729   7209
  10 10 10 10 10  10   10   10    10     10   1000
  ...
		

Crossrefs

Cf. A000012 (row 1), A080040 (row 2).

Programs

  • Mathematica
    nmax = 100; AntiDiagonalFlatten[matrix_] := Module[{n = Length@matrix}, Flatten[Table[matrix[[i, s - i]], {s, 2, 2 n}, {i, Max[1, s - n], Min[n, s - 1]}], 1]]; A384147 = AntiDiagonalFlatten[Table[LinearRecurrence[ConstantArray[n, n], ConstantArray[n, n], {1, nmax}], {n, 1, nmax}]][[;; nmax*(nmax + 1)/2]]

Formula

A(m,m+1) = m^3 for all m >= 1.
A(m,m+2) = m^4 + m^3 - m^2 for all m >= 1.
A(m,m+3) = m^5 + 2m^4 - 2m^2 for all m >= 1.
A(m,m+4) = m^6 + 3m^5 + 2m^4 - 2m^3 - 3m^2 for all m >= 3.
A(m,m+5) = m^7 + 4m^6 + 5m^5 - 5m^3 - 4m^2 for all m >= 4.
...
A(m,m+k) ~ O(m^(k+2)) for all m >= k-1 may be derived similarly.