A384184 Order of the permutation of {0,...,n-1} formed by successively swapping elements at i and 2*i mod n, for i = 0,...,n-1.
1, 2, 1, 4, 2, 2, 2, 8, 3, 4, 5, 4, 6, 4, 6, 16, 4, 6, 9, 8, 4, 10, 28, 8, 10, 12, 9, 8, 14, 12, 12, 32, 5, 8, 70, 12, 18, 18, 24, 16, 10, 8, 7, 20, 210, 56, 126, 16, 110, 20, 60, 24, 26, 18, 120, 16, 9, 28, 29, 24, 30, 24, 60, 64, 6, 10, 33, 16
Offset: 1
Keywords
Examples
For n = 11, the permutation is {0,3,4,7,8,1,2,9,10,5,6} and it has order a(11) = 5.
Links
- Mia Boudreau, Table of n, a(n) for n = 1..10000
- Mia Boudreau, Java program, GitHub
Crossrefs
Programs
-
Python
from sympy.combinatorics import Permutation def a(n): L = list(range(n)) for i in range(n): if (j:= (i << 1) % n) != i: L[i],L[j] = L[j],L[i] return Permutation(L).order() # DarĂo Clavijo, Jun 05 2025
Formula
a(2*n) = 2*a(n).
a(2^n) = 2^n.
Conjecture: a(2^n + 2^x) = 2^n * (x-n) if x > n.
a(2^n - 1) = A003418(n-1).
s(2^n + 1) = A000027(n).
a(2*n - 1) = A051732(n).
a(A004626(n)) % 2 = 1.
a(A065119(n)) = n/3.
a(A001122(n)) = (n-1) / 2.
a(A155072(n)) = (n-1) / 4.
a(A001133(n)) = (n-1) / 6.
a(A001134(n)) = (n-1) / 8.
a(A001135(n)) = (n-1) / 10.
a(A225759(n)) = (n-1) / 16.
Comments