cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mia Boudreau

Mia Boudreau's wiki page.

Mia Boudreau has authored 2 sequences.

A386253 a(n) = (smallest digit of n)^(largest digit of n) + n.

Original entry on oeis.org

1, 2, 6, 30, 260, 3130, 46662, 823550, 16777224, 387420498, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 22, 26, 31, 40, 57, 90, 155, 284, 541, 30, 32, 40, 60, 115, 278, 765, 2224, 6599, 19722, 40, 42, 58, 124, 300, 1069, 4142, 16431, 65584, 262193, 50
Offset: 0

Author

Mia Boudreau, Jul 16 2025

Keywords

Comments

0^0 is an indeterminate form, but for the purpose of a(0) it is taken to be 1. - Robert Israel, Jul 22 2025

Examples

			a(563) = 1292 because 3^6 + 563 = 1292.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local L; L:= convert(n,base,10); n + min(L)^max(L) end proc:
    map(f, [$0..100]); # Robert Israel, Jul 22 2025
  • Mathematica
    Unprotect[Power]; 0^0:=1; Protect[Power]; a[n_]:= (Min[IntegerDigits[n]])^(Max[IntegerDigits[n]]) + n; Array[a,51,0] (* Stefano Spezia, Jul 17 2025 *)
  • Python
    def a(n): return int(min(s:=str(n)))**int(max(s)) + n
    print([a(n) for n in range(51)]) # Michael S. Branicky, Jul 21 2025

Formula

a(n) = A054054(n)^A054055(n) + n.

A384184 Order of the permutation of {0,...,n-1} formed by successively swapping elements at i and 2*i mod n, for i = 0,...,n-1.

Original entry on oeis.org

1, 2, 1, 4, 2, 2, 2, 8, 3, 4, 5, 4, 6, 4, 6, 16, 4, 6, 9, 8, 4, 10, 28, 8, 10, 12, 9, 8, 14, 12, 12, 32, 5, 8, 70, 12, 18, 18, 24, 16, 10, 8, 7, 20, 210, 56, 126, 16, 110, 20, 60, 24, 26, 18, 120, 16, 9, 28, 29, 24, 30, 24, 60, 64, 6, 10, 33, 16
Offset: 1

Author

Mia Boudreau, May 29 2025

Keywords

Comments

a(2*n) = 2*a(n) since the cycle lengths of the permutation with size 2*n is effectively that of size n twice, doubled. Thus, the LCM/order is doubled.

Examples

			For n = 11, the permutation is {0,3,4,7,8,1,2,9,10,5,6} and it has order a(11) = 5.
		

Programs

  • Python
    from sympy.combinatorics import Permutation
    def a(n):
       L = list(range(n))
       for i in range(n):
           if (j:= (i << 1) % n) != i:
               L[i],L[j] = L[j],L[i]
       return Permutation(L).order() # DarĂ­o Clavijo, Jun 05 2025

Formula

a(2*n) = 2*a(n).
a(2^n) = 2^n.
Conjecture: a(2^n + 2^x) = 2^n * (x-n) if x > n.
a(2^n - 1) = A003418(n-1).
s(2^n + 1) = A000027(n).
a(2*n - 1) = A051732(n).
a(A004626(n)) % 2 = 1.
a(A065119(n)) = n/3.
a(A001122(n)) = (n-1) / 2.
a(A155072(n)) = (n-1) / 4.
a(A001133(n)) = (n-1) / 6.
a(A001134(n)) = (n-1) / 8.
a(A001135(n)) = (n-1) / 10.
a(A225759(n)) = (n-1) / 16.