cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384241 a(n) = Product_{k=0..n-1} (3*n-4*k).

Original entry on oeis.org

1, 3, 12, 45, 0, -3465, -60480, -626535, 0, 204417675, 6227020800, 104928949125, 0, -77849405258625, -3379030566912000, -78792721832199375, 0, 104312208642352585875, 5875458349746585600000, 174954117301479619228125, 0, -362526128354588965187045625, -25100240092118201519308800000
Offset: 0

Views

Author

Seiichi Manyama, May 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = prod(k=0, n-1, 3*n-4*k);
    
  • Sage
    def a(n): return 4^n*falling_factorial(3*n/4, n)

Formula

a(n) = 4^n * FallingFactorial(3*n/4,n).
a(n) = n! * [x^n] (1 + 4*x)^(3*n/4).
a(n) = 3 * (-1)^(n-1) * A383996(n) for n > 0.
a(4*n) = 0 for n > 0.