cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384271 G.f. A(x) satisfies -x = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 + x^n).

Original entry on oeis.org

1, 1, 1, 3, 5, 14, 31, 85, 214, 589, 1572, 4385, 12124, 34315, 97006, 277958, 797969, 2310313, 6708311, 19590928, 57386238, 168805975, 497956135, 1473704926, 4372436946, 13007158125, 38779605810, 115872525324, 346897113802, 1040486309806, 3126167631775, 9407946523434, 28355033124335, 85582565615778
Offset: 0

Views

Author

Paul D. Hanna, May 24 2025

Keywords

Comments

The g.f. utilizes the Jacobi triple product identity: Product_{n>=1} (1 - x^n/a)*(1 - x^(n-1)*a)*(1-x^n) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * a^n.

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 14*x^5 + 31*x^6 + 85*x^7 + 214*x^8 + 589*x^9 + 1572*x^10 + 4385*x^11 + 12124*x^12 + ...
RELATED SERIES.
1/A(x) = 1 - x - 2*x^3 - 7*x^5 - 4*x^6 - 33*x^7 - 43*x^8 - 190*x^9 - 363*x^10 - 1265*x^11 - 2967*x^12 - 9313*x^13 - 24254*x^14 + ...
By definition of g.f. A(x),
-x = (1 - x/A(x))*(1 - A(x))*(1 + x) * (1 - x^2/A(x))*(1 - x*A(x))*(1 + x^2) * (1 - x^3/A(x))*(1 - x^2*A(x))*(1 + x^3) * (1 - x^4/A(x))*(1 - x^3*A(x))*(1 + x^4) * (1 - x^5/A(x))*(1 - x^4*A(x))*(1 + x^5) * (1 - x^6/A(x))*(1 - x^5*A(x))*(1 + x^6) * ...
also,
-x*theta_4(x) = (1 - x/A(x))*(1 - A(x))*(1 - x) * (1 - x^2/A(x))*(1 - x*A(x))*(1 - x^2) * (1 - x^3/A(x))*(1 - x^2*A(x))*(1 - x^3) * (1 - x^4/A(x))*(1 - x^3*A(x))*(1 - x^4) * (1 - x^5/A(x))*(1 - x^4*A(x))*(1 - x^5) * (1 - x^6/A(x))*(1 - x^5*A(x))*(1 - x^6) * ...
where Jacobi's theta_4(x) begins
theta_4(x) = 1 - 2*x + 2*x^4 - 2*x^9 + 2*x^16 - 2*x^25 + 2*x^36 - 2*x^49 +- ... + (-1)^n*2*x^(n^2) + ...
SPECIFIC VALUES.
A(exp(-Pi)) = 1.0453432348429282081117266580603161092013621219944501002...
  where Sum_{n=-oo..+oo} (-1)^n * exp(-Pi*n*(n-1)/2) * A(exp(-Pi))^n = -exp(-Pi) * (Pi/2)^(1/4) / gamma(3/4) = -0.03947933420376592813...
A(-exp(-Pi)) = 0.958426933091195985748561440955710208995111661258536170...
  where Sum_{n=-oo..+oo} (-1)^(n*(n+1)/2) * exp(-Pi*n*(n-1)/2) * A(-exp(-Pi))^n = exp(-Pi) * Pi^(1/4) / gamma(3/4) = 0.04694910513068872743...
A(t) = 2 at t = 0.31637346425553975249950084871655397381494910538235011...
A(t) = 7/4 at t = 0.306394408393287726599555143524924576884132332626742...
A(t) = 5/3 at t = 0.298403642258683011765026172638519982558475148161098...
A(t) = 3/2 at t = 0.271351341798078045586394278854619398226629821704419...
A(t) = 4/3 at t = 0.222121640630627872529588897705597278294416500502588...
A(t) = 5/4 at t = 0.185212111226798258067304643213927542314746099159395...
A(1/4) = 1.415936196810577322060687637240440296052642753467849...
A(1/5) = 1.280767471524969264389815996502959550941291484191129...
A(1/6) = 1.215194363106761985540779108431983083763494550900814...
A(1/7) = 1.175354795171732738951963612236910785381681269370988...
A(1/8) = 1.148310502549415307985734864677154956069415167149368...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constants {d, c}: *) {1/r, -s*Log[r] * Sqrt[((s-1)*(-2*r*(s-1) * QPochhammer[s, r] * Derivative[0, 1][QPochhammer][-1, r] + s*QPochhammer[-1, r]^2*QPochhammer[s, r]^2 * Derivative[0, 1][QPochhammer][1/s, r] + 2*(s-1) * QPochhammer[-1, r] * (QPochhammer[s, r] - r*Derivative[0, 1][QPochhammer][s, r]))) / (QPochhammer[-1, r] * QPochhammer[s, r] * (-s*Log[r]^2 + (s-1)^2 * QPolyGamma[1, -Log[s]/Log[r], r] + (s-1)^2 * QPolyGamma[1, Log[s]/Log[r], r]))] / (2*Sqrt[Pi])} /. FindRoot[{s * QPochhammer[-1, r] * QPochhammer[1/s, r] * QPochhammer[s, r] == -2*r*(s-1), Log[r]/(s-1) == QPolyGamma[0, Log[1/s]/Log[r], r] - QPolyGamma[0, Log[s]/Log[r], r]}, {r, 1/3}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, May 25 2025 *)
  • PARI
    {a(n) = my(A=[1,1]);  for(i=2,n, A=concat(A,0);
    A[#A] = polcoef(x + prod(n=1,#A, (1 - x^n/Ser(A)) * (1 - x^(n-1)*Ser(A)) * (1 + x^n) ),#A-1); ); A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas where theta_4(x) is a Jacobi elliptic function.
(1) -x = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 + x^n).
(2) x/A(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 + x^n).
(3) -x*theta_4(x) = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 - x^n).
(4) x*theta_4(x)/A(x) = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^n).
(5.a) -x*theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n.
(5.b) -x*theta_4(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) * A(x)^n.
(6.a) x*theta_4(x)/A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)/2) / A(x)^n.
(6.b) x*theta_4(x)/A(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n.
a(n) ~ c * d^n / n^(3/2), where d = 3.15858040658396206484741188... and c = 0.5457701830227905480303... - Vaclav Kotesovec, May 25 2025