A237516 Pyramidal centered square numbers.
1, 15, 91, 325, 861, 1891, 3655, 6441, 10585, 16471, 24531, 35245, 49141, 66795, 88831, 115921, 148785, 188191, 234955, 289941, 354061, 428275, 513591, 611065, 721801, 846951, 987715, 1145341, 1321125, 1516411, 1732591, 1971105, 2233441, 2521135, 2835771, 3178981, 3552445, 3957891, 4397095, 4871881
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- José Miguel Blanco Casado and Miguel-Ángel Pérez García-Ortega, El Libro de las Ternas Pitagóricas.
- Kival Ngaokrajang, Illustration for n = 1..6.
- Eric Weisstein's World of Mathematics, Diamond.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Mathematica
Table[Sum[i, {i, 2n(n + 1) + 1}], {n, 0, 29}] (* Alonso del Arte, Feb 09 2014 *) LinearRecurrence[{5,-10,10,-5,1},{1,15,91,325,861},60] (* Harvey P. Dale, Apr 21 2018 *) a=Table[(n(n+1)),{n,0,29}];Apply[Join,Map[{(#+1)(2#+1)}&,a]] (* Miguel-Ángel Pérez García-Ortega, Jun 05 2025 *)
-
PARI
Vec(-x*(x^2+4*x+1)*(x^2+6*x+1)/(x-1)^5 + O(x^100)) \\ Colin Barker, Jan 17 2015
Formula
a(n) = 2*n^4 - 4*n^3 + 5*n^2 - 3*n + 1.
a(n) = Sum_{i = 1..(2*n*(n + 1) + 1)} i.
From Colin Barker, Jan 17 2015: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: -x*(x^2+4*x+1)*(x^2+6*x+1)/(x-1)^5. (End)
E.g.f.: -1 + exp(x)*(1 + 7*x^2 + 8*x^3 + 2*x^4). - Elmo R. Oliveira, Aug 22 2025
Comments