A381890
Expansion of Product_{k>=1} (1 + k*x)^((1/12) * (3/4)^k).
Original entry on oeis.org
1, 1, -3, 21, -225, 3207, -56821, 1202099, -29558466, 828401462, -26068940938, 910286433318, -34930741605414, 1461245816594058, -66187658069563710, 3227353484661602866, -168557942284281821933, 9388117645333487820387, -555463036269652132509113
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, (-1)^(k-1)*sum(j=0, k, 3^(j-1)*j!*stirling(k, j, 2))*x^k/k)))
A384344
Expansion of Product_{k>=1} (1 + k*x)^((1/6) * (2/3)^k).
Original entry on oeis.org
1, 1, -2, 10, -77, 787, -9972, 150552, -2637729, 52615903, -1177590290, 29228602546, -796945212035, 23681656958269, -761803800466856, 26376749702235900, -978091742247376932, 38674335439691203644, -1624351949069462807480, 72221688529265896447384
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, (-1)^(k-1)*sum(j=0, k, 2^(j-1)*j!*stirling(k, j, 2))*x^k/k)))
A384343
Expansion of Product_{k>=1} (1 + k*x)^((1/2)^(k+1)).
Original entry on oeis.org
1, 1, -1, 3, -14, 86, -650, 5822, -60287, 708873, -9334633, 136142011, -2179136696, 37987580268, -716513806824, 14540745561432, -315936103907094, 7318039354370826, -180020739049731594, 4687207255550122014, -128782014195949550724, 3723598212075752653284, -113023054997369519314572
Offset: 0
-
terms = 25; A[] = 1; Do[A[x] = -A[x] + 2*((1 + x)*A[x/(1 + x)])^(1/2) + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 29 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(exp(sum(k=1, N, (-1)^(k-1)*sum(j=0, k, j!*stirling(k, j, 2))*x^k/k)))
A384334
Expansion of Product_{k>=1} (1 + k*x)^((4/5)^k).
Original entry on oeis.org
1, 20, 110, 340, -1995, 53904, -1534600, 49159600, -1758057650, 69662897000, -3037327435860, 144787947993000, -7502235351828450, 420296374337607600, -25335189019626256200, 1636008982452733508400, -112721505676611504401025, 8256863266451569604835900
Offset: 0
-
terms = 20; A[] = 1; Do[A[x] = -4*A[x] + 5*A[x/(1+x)]^(4/5) * (1+x)^4 + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 27 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(exp(5*sum(k=1, N, (-1)^(k-1)*sum(j=0, k, 4^j*j!*stirling(k, j, 2))*x^k/k)))
Showing 1-4 of 4 results.