cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A384344 Expansion of Product_{k>=1} (1 + k*x)^((1/6) * (2/3)^k).

Original entry on oeis.org

1, 1, -2, 10, -77, 787, -9972, 150552, -2637729, 52615903, -1177590290, 29228602546, -796945212035, 23681656958269, -761803800466856, 26376749702235900, -978091742247376932, 38674335439691203644, -1624351949069462807480, 72221688529265896447384
Offset: 0

Views

Author

Seiichi Manyama, May 26 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, (-1)^(k-1)*sum(j=0, k, 2^(j-1)*j!*stirling(k, j, 2))*x^k/k)))

Formula

G.f. A(x) satisfies A(x) = (1+x)^(1/3) * A(x/(1+x))^(2/3).
G.f.: exp(Sum_{k>=1} (-1)^(k-1) * A050351(k) * x^k/k).
G.f.: 1/B(-x), where B(x) is the g.f. of A090351.

A384345 Expansion of Product_{k>=1} (1 + k*x)^((1/20) * (4/5)^k).

Original entry on oeis.org

1, 1, -4, 36, -494, 9026, -205284, 5581276, -176518189, 6366839811, -257967985400, 11601382088720, -573484266103260, 30909105184132900, -1804012437852543160, 113356419526025564808, -7629831521445348113927, 547688013439312943707673, -41765446604358525581076812
Offset: 0

Views

Author

Seiichi Manyama, May 26 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, (-1)^(k-1)*sum(j=0, k, 4^(j-1)*j!*stirling(k, j, 2))*x^k/k)))

Formula

G.f. A(x) satisfies A(x) = (1+x)^(1/5) * A(x/(1+x))^(4/5).
G.f.: exp(Sum_{k>=1} (-1)^(k-1) * A050353(k) * x^k/k).
G.f.: 1/B(-x), where B(x) is the g.f. of A090356.

A384343 Expansion of Product_{k>=1} (1 + k*x)^((1/2)^(k+1)).

Original entry on oeis.org

1, 1, -1, 3, -14, 86, -650, 5822, -60287, 708873, -9334633, 136142011, -2179136696, 37987580268, -716513806824, 14540745561432, -315936103907094, 7318039354370826, -180020739049731594, 4687207255550122014, -128782014195949550724, 3723598212075752653284, -113023054997369519314572
Offset: 0

Views

Author

Seiichi Manyama, May 26 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 25; A[] = 1; Do[A[x] = -A[x] + 2*((1 + x)*A[x/(1 + x)])^(1/2) + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 29 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(exp(sum(k=1, N, (-1)^(k-1)*sum(j=0, k, j!*stirling(k, j, 2))*x^k/k)))

Formula

G.f. A(x) satisfies A(x) = (1+x)^(1/2) * A(x/(1+x))^(1/2).
G.f.: exp(Sum_{k>=1} (-1)^(k-1) * A000670(k) * x^k/k).
G.f.: 1/B(-x), where B(x) is the g.f. of A084784.
a(n) ~ (-1)^(n+1) * (n-1)! / (2*log(2)^(n+1)). - Vaclav Kotesovec, May 29 2025

A384333 Expansion of Product_{k>=1} (1 + k*x)^((3/4)^k).

Original entry on oeis.org

1, 12, 30, 76, -819, 15120, -320568, 7719984, -208986462, 6300545128, -209806494828, 7660698340008, -304718887446110, 13127557400200944, -609336227455254936, 30330991088734345200, -1612305658103085757467, 91179423240593288760396, -5467060640706775435713298
Offset: 0

Views

Author

Seiichi Manyama, May 26 2025

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = -3*A[x] + 4*A[x/(1+x)]^(3/4) * (1+x)^3 + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 27 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(4*sum(k=1, N, (-1)^(k-1)*sum(j=0, k, 3^j*j!*stirling(k, j, 2))*x^k/k)))

Formula

G.f. A(x) satisfies A(x) = (1+x)^3 * A(x/(1+x))^(3/4).
G.f.: exp(4 * Sum_{k>=1} (-1)^(k-1) * A032033(k) * x^k/k).
G.f.: 1/B(-x), where B(x) is the g.f. of A384325.
G.f.: B(x)^12, where B(x) is the g.f. of A381890.
a(n) ~ (-1)^(n+1) * (n-1)! / log(4/3)^(n+1). - Vaclav Kotesovec, May 27 2025
Showing 1-4 of 4 results.