cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384360 Expansion of Product_{k>=1} 1/(1 - k*(k+1)*(k+2)/6 * x)^((1/192) * (3/4)^k).

Original entry on oeis.org

1, 1, 424, 998584, 6925040260, 105920615923684, 3026129933925315784, 144928319460945421096936, 10782220800085014574469693026, 1177609713750570874317795178806210, 180749886489278186545417627942230436008, 37658177020555445685152123914054243838809128
Offset: 0

Views

Author

Seiichi Manyama, May 27 2025

Keywords

Crossrefs

Cf. A384364.

Programs

  • PARI
    a384364(n, k) = sum(i=0, k*n, 3^i*sum(j=0, i, (-1)^j*binomial(i, j)*binomial(i-j, n)^k));
    my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, a384364(3, k)*x^k/k)/27))

Formula

G.f.: exp((1/27) * Sum_{k>=1} A384364(3,k) * x^k/k).