A384318
Number of strict integer partitions of n that are not maximally refined.
Original entry on oeis.org
0, 0, 0, 1, 1, 1, 3, 4, 4, 5, 9, 10, 13, 15, 17, 26, 29, 36, 43, 49, 57, 74, 84, 101, 118, 136, 158, 181, 219, 248, 291
Offset: 0
For y = (5,4,2) we have 4 = 3+1 so y is counted under a(11).
On the other hand, no part of z = (6,4,1) is a subset-sum of the non-parts {2,3,5}, so z is not counted under a(11).
The a(3) = 1 through a(11) = 10 strict partitions:
(3) (4) (5) (6) (7) (8) (9) (10) (11)
(4,2) (4,3) (5,3) (5,4) (6,4) (6,5)
(5,1) (5,2) (6,2) (6,3) (7,3) (7,4)
(6,1) (7,1) (7,2) (8,2) (8,3)
(8,1) (9,1) (9,2)
(5,3,2) (10,1)
(5,4,1) (5,4,2)
(6,3,1) (6,3,2)
(7,2,1) (7,3,1)
(8,2,1)
The non-strict version for at least one choice is
A383708, for none
A383710.
These partitions are ranked by
A384322.
For subsets instead of partitions we have
A384350, complement
A326080.
Cf.
A048767,
A098859,
A179822,
A239455,
A279375,
A317142,
A351293,
A382525,
A383533,
A383711,
A384391.
-
nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,30}]
A384350
Number of subsets of {1..n} containing at least one element that is a sum of distinct non-elements.
Original entry on oeis.org
0, 0, 0, 1, 4, 13, 33, 81, 183, 402, 856, 1801, 3721, 7646, 15567, 31575
Offset: 0
For the set s = {1,5} we have 5 = 2+3, so s is counted under a(5).
The a(0) = 0 through a(5) = 13 subsets:
. . . {3} {3} {3}
{4} {4}
{2,4} {5}
{3,4} {1,5}
{2,4}
{2,5}
{3,4}
{3,5}
{4,5}
{1,4,5}
{2,3,5}
{2,4,5}
{3,4,5}
For strict partitions of n instead of subsets of {1..n} we have
A384318, ranks
A384322.
A383706 counts ways to choose disjoint strict partitions of prime indices, non-disjoint
A357982, non-strict
A299200.
-
nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@nonsets[#]]!={}&]],{n,0,10}]
A384392
Number of integer partitions of n whose distinct parts are maximally refined.
Original entry on oeis.org
1, 1, 2, 2, 4, 6, 7, 10, 14, 20, 24, 33, 41, 55, 70, 88, 110, 140, 171, 214, 265, 324, 397, 485, 588, 711, 861, 1032, 1241, 1486, 1773
Offset: 0
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (21) (22) (32) (222) (322) (332)
(11) (111) (31) (41) (321) (331) (431)
(211) (221) (411) (421) (521)
(1111) (311) (2211) (2221) (2222)
(2111) (3111) (3211) (3221)
(11111) (21111) (4111) (3311)
(111111) (22111) (4211)
(31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
For subsets instead of partitions we have
A326080, complement
A384350.
Cf.
A179822,
A279375,
A279790,
A299200,
A317142,
A326083,
A357982,
A383706,
A383708,
A383710,
A384317,
A384318,
A384319,
A384391.
-
nonsets[y_]:=If[Length[y]==0,{},Rest[Subsets[Complement[Range[Max@@y],y]]]];
Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@nonsets[#]]=={}&]],{n,0,15}]
Showing 1-3 of 3 results.
Comments